双向LSTM中文微博情感分类项目
- 1、数据集说明
- 2、双向LSTM中文微博情感分类项目实战
1、数据集说明
这里完成一个中文微博情感分类项目。这里我使用的数据集是从新浪微博收集的 12 万条数据,正负样本各一半。标签中 1 表示正面评论,0 表示负面评论。数据来源为https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/weibo_sen ti_100k/intro.ipynb如果你有其他数据的话,也可以使用其他数据。
这一次我们使用的数据需要自己做处理,所以我们需要对句子进行分词,分词后再对每 个词根据频率来进行编号。这里我们要使用的分词工具是结巴分词,结巴分词是一个很好用 的中文分词工具,安装方式为打开命令提示符,然后输入命令:
代码语言:javascript复制pip install jieba
安装好以后在 python 程序中直接 import jieba 就可以使用了。
2、双向LSTM中文微博情感分类项目实战
上一博客我们讲解了 CNN 在中文微博情感分类项目中的应用,这一篇文章我们改用 LSTM 来完成,前期数据处理部分都是一样的流程,只有建模部分的程序