Spark的特点

2023-02-25 15:29:14 浏览数 (1)

·速度快:Spark基于内存进行计算(当然也有部分计算基于磁盘,比如shuffle)。

·容易上手开发:Spark的基于RDD的计算模型,比Hadoop的基于Map-Reduce的计算模型要更加易于理解,更加易于上手开发,实现各种复杂功能,比如二次排序、topn等复杂操作时,更加便捷。

·超强的通用性:Spark提供了Spark RDD、Spark SQL、Spark Streaming、Spark MLlib、Spark GraphX等技术组件,可以一站式地完成大数据领域的离线批处理、交互式查询、流式计算、机器学习、图计算等常见的任务。

·集成Hadoop:Spark并不是要成为一个大数据领域的“独裁者”,一个人霸占大数据领域所有的“地盘”,而是与Hadoop进行了高度的集成,两者可以完美的配合使用。Hadoop的HDFS、Hive、HBase负责存储,YARN负责资源调度;Spark负责大数据计算。实际上,Hadoop Spark的组合,是一种“double win”的组合。

·极高的活跃度:Spark目前是Apache基金会的顶级项目,全世界有大量的优秀工程师是Spark的committer。并且世界上很多顶级的IT公司都在大规模地使用Spark。

0 人点赞