JSON综合性复杂案例

2023-02-25 15:55:32 浏览数 (2)

查询成绩为80分以上的学生的基本信息与成绩信息 Student.json {"name":"Leo", "score":85} {"name":"Marry", "score":99} {"name":"Jack", "score":74}

代码语言:javascript复制
/**
  * JSON数据源
  * @author Administrator
  *
  */
public class JSONDataSource {

​public static void main(String[] args) {
​​SparkConf conf = new SparkConf()​​​.setAppName("JSONDataSource");  
​​JavaSparkContext sc = new JavaSparkContext(conf);
​​SQLContext sqlContext = new SQLContext(sc);
​​// 针对json文件,创建DataFrame(针对json文件创建DataFrame)
​​DataFrame studentScoresDF = sqlContext.read().json​​​​"hdfs://spark1:9000/spark-study/students.json");  
// 针对学生成绩信息的DataFrame,注册临时表,查询分数大于80分的学生的姓名
​​// (注册临时表,针对临时表执行sql语句)
​​studentScoresDF.registerTempTable("student_scores");
​​DataFrame goodStudentScoresDF = sqlContext.sql(​​​​"select name,score from student_scores where score>=80");
// (将DataFrame转换为rdd,执行transformation操作)
​​List<String> goodStudentNames = goodStudentScoresDF.javaRDD().map(

new Function<Row, String>() {

​​​​​private static final long serialVersionUID = 1L;

​​​​​@Override
​​​​​public String call(Row row) throws Exception {
​​​​​​return row.getString(0);
​​​​​}
​​​​}).collect();

​​// 然后针对JavaRDD<String>,创建DataFrame
​​// (针对包含json串的JavaRDD,创建DataFrame)
​​List<String> studentInfoJSONs = new ArrayList<String>();
​​studentInfoJSONs.add("{"name":"Leo", "age":18}");  
​​studentInfoJSONs.add("{"name":"Marry", "age":17}");  
​​studentInfoJSONs.add("{"name":"Jack", "age":19}");
​​JavaRDD<String> studentInfoJSONsRDD = sc.parallelize(studentInfoJSONs);
​​DataFrame studentInfosDF = sqlContext.read().json(studentInfoJSONsRDD);
​​// 针对学生基本信息DataFrame,注册临时表,然后查询分数大于80分的学生的基本信息
​​studentInfosDF.registerTempTable("student_infos");  
​​String sql = "select name,age from student_infos where name in (";        
for(int i = 0; i < goodStudentNames.size(); i  ) {
​​​sql  = "'"   goodStudentNames.get(i)   "'";
​​​if(i < goodStudentNames.size() - 1) {
​​​​sql  = ",";
​​​}
​​}
​​sql  = ")";

​​DataFrame goodStudentInfosDF = sqlContext.sql(sql);
​​// 然后将两份数据的DataFrame,转换为JavaPairRDD,执行join transformation
​​// (将DataFrame转换为JavaRDD,再map为JavaPairRDD,然后进行join)
​​JavaPairRDD<String, Tuple2<Integer, Integer>> goodStudentsRDD = ​​​​goodStudentScoresDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {

private static final long serialVersionUID = 1L;

​​​​​@Override
​​​​​public Tuple2<String, Integer> call(Row row) throws Exception {
​​​​​​return new Tuple2<String, Integer>(row.getString(0),
​​​​​​​​Integer.valueOf(String.valueOf(row.getLong(1))));  
​​​​​}
​​​​}).join(goodStudentInfosDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {

private static final long serialVersionUID = 1L;

​​​​​@Override
​​​​​public Tuple2<String, Integer> call(Row row) throws Exception {
​​​​​​return new Tuple2<String, Integer>(row.getString(0),
​​​​​​​​Integer.valueOf(String.valueOf(row.getLong(1))));  
​​​​​}
​​​​}));

// 然后将封装在RDD中的好学生的全部信息,转换为一个JavaRDD<Row>的格式
​​// (将JavaRDD,转换为DataFrame)
​​JavaRDD<Row> goodStudentRowsRDD = goodStudentsRDD.map(

​​​​new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() {

​​​​​private static final long serialVersionUID = 1L;

​​​​​@Override
​​​​​public Row call(
​​​​​​​Tuple2<String, Tuple2<Integer, Integer>> tuple) ​​​​​​​throws Exception {
​​​​​​return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
​​​​​}
​​​​});

​​// 创建一份元数据,将JavaRDD<Row>转换为DataFrame
​​List<StructField> structFields = new ArrayList<StructField>();
​​structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
​​structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));  
​​structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));  
​​StructType structType = DataTypes.createStructType(structFields);  
​​DataFrame goodStudentsDF = sqlContext.createDataFrame(goodStudentRowsRDD, structType);

// 将好学生的全部信息保存到一个json文件中去
// (将DataFrame中的数据保存到外部的json文件中去)         
goodStudentsDF.write().format("json").save("hdfs://spark1:9000/spark-study/good-students");  
​}
}

查看结果: Hadoop fs –text /spark-study/good-students/part-r*

Scala版本

代码语言:javascript复制
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.LongType


/**
* @author Administrator
*/
object JSONDataSource {

def main(args: Array[String]): Unit = {
val conf = new SparkConf()
   .setAppName("JSONDataSource")  
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)

// 创建学生成绩DataFrame
val studentScoresDF = sqlContext.read.json("hdfs://spark1:9000/spark-study/students.json")

// 查询出分数大于80分的学生成绩信息,以及学生姓名
studentScoresDF.registerTempTable("student_scores")
val goodStudentScoresDF = sqlContext.sql("select name,score from student_scores where score>=80")
val goodStudentNames = goodStudentScoresDF.rdd.map { row => row(0) }.collect()  IDEa

// 创建学生基本信息DataFrame
val studentInfoJSONs = Array("{"name":"Leo", "age":18}",
   "{"name":"Marry", "age":17}",
   "{"name":"Jack", "age":19}")
val studentInfoJSONsRDD = sc.parallelize(studentInfoJSONs, 3);
val studentInfosDF = sqlContext.read.json(studentInfoJSONsRDD)  

// 查询分数大于80分的学生的基本信息
studentInfosDF.registerTempTable("student_infos")

var sql = "select name,age from student_infos where name in ("
for(i <- 0 until goodStudentNames.length) {
 sql  = "'"   goodStudentNames(i)   "'"
 if(i < goodStudentNames.length - 1) {
   sql  = ","
 }
}
sql  = ")"  

val goodStudentInfosDF = sqlContext.sql(sql)

// 将分数大于80分的学生的成绩信息与基本信息进行join
val goodStudentsRDD =
   goodStudentScoresDF.rdd.map { row => (row.getAs[String]("name"), row.getAs[Long]("score")) }
       .join(goodStudentInfosDF.rdd.map { row => (row.getAs[String]("name"), row.getAs[Long]("age")) })  

// 将rdd转换为dataframe
val goodStudentRowsRDD = goodStudentsRDD.map(
   info => Row(info._1, info._2._1.toInt, info._2._2.toInt))  
       
val structType = StructType(Array(
   StructField("name", StringType, true),
   StructField("score", IntegerType, true),
   StructField("age", IntegerType, true)))  
   
val goodStudentsDF = sqlContext.createDataFrame(goodStudentRowsRDD, structType)  

// 将dataframe中的数据保存到json中
goodStudentsDF.write.format("json").save("hdfs://spark1:9000/spark-study/good-students-scala")  
 }

}

0 人点赞