1.Theano
Theano 在深度学习框架中是祖师级的存在。它的开发始于 2007,早期开发者包括传奇人物 Yoshua Bengio 和 Ian Goodfellow。
Theano 基于 Python,是一个擅长处理多维数组的库(这方面它类似于 NumPy)。当与其他深度学习库结合起来,它十分适合数据探索。它为执行深度学习中大规模神经网络算法的运算所设计。其实,它可以被更好地理解为一个数学表达式的编译器:用符号式语言定义你想要的结果,该框架会对你的程序进行编译,来高效运行于 GPU 或 CPU。
但随着这些年的发展,大量基于 Theano 的开源深度学习库被开发出来,包括 Keras, Lasagne 和 Blocks。这些更高层级的 wrapper API,能大幅减少开发时间以及过程中的麻烦。甚至,据雷锋网所知,很少开发者会使用“裸奔”的 Theano,多数人需要辅助的 API。顺便说一句,Theano 是一整套生态系统,别只用它裸奔,然后抱怨不好用。
在过去的很长一段时间内,Theano 是深度学习开发与研究的行业标准。而且,由于出身学界,它最初是为学术研究而设计,这导致深度学习领域的许多学者至今仍在使用 Theano。但随着 Tensorflow 在谷歌的支持下强势崛起,Theano 日渐式微,使用的人越来越少。这过程中的标志性事件是:创始者之一的 Ian Goodfellow 放弃 Theano 转去谷歌开发 Tensorflow。
因此,资深一些的开发者往往认为,对于深度学习新手,用Theano 练练手并没有任何坏处。但对于职业开发者,还是建议用 Tensorflow。
优点:
- Python NumPy 的组合
- 使用计算图
- RNN 与计算图兼容良好
- 有 Keras 和 Lasagne 这样高层的库
- 不少开发者反映,它的学习门槛比Tensorflow 低
缺点:
- 本身很底层
- 比 Torch 臃肿
- 不支持分布式
- 有的错误信息没什么用
- 大模型的编译时间有时要很久
- 对事先训练过的模型支持不足
- 用的人越来越少
2. Caffe
它的全称是 “Convolution Architecture For Feature Extraction”,意为“用于特征提取的卷积架构”,很明白地体现了它的用途。Caffe 的创始人,是加州大学伯克利分校的中国籍博士生贾扬清。当时贾在伯克利计算机视觉与学习中心做研究。博士毕业后,他先后在谷歌和 Facebook 工作。
在 AI 开发者圈子中,Caffe 可以说是无人不知、无人不晓。据 GitHub 最新的机器学习项目热度排名,Caffe 仅位列 Tensorflow 之后,雄踞第二。它是一个被广泛使用的机器视觉库,把 Matlab 执行快速卷积网络的方式带到 C 和 C 。虽然 Caffe 被部分开发者看做是通用框架,但它的设计初衷是计算机视觉——并不适于其他深度学习应用,比如文字、语音识别和处理时间序列数据。
Caffe 的主要用途:利用卷积神经网络进行图像分类。这方面它代表了业内一流水平,是开发者的首选。
说到 Caffe,就不得不提 Model Zoo。后者是在 Caffe 基础上开发出的一系列模型的汇聚之地。因此,开发者使用 Caffe 最大的好处是:能在 Model Zoo 海量的、事先训练好的神经网络中,选择贴近自己使用需求的直接下载,并立刻就能用。
- Alex’s CIFAR-10 tutorial with Caffe
- Training LeNet on MNIST with Caffe
- ImageNet with Caffe
优点:
非常适合前馈神经网络和图像处理任务
非常适于利用现有神经网络
不写代码也能训练模型
Python 交互界面做得不错
缺点:
需要 C 和 CUDA 来编写新 GPU 层级。
在循环神经网络上表现不佳
对于大型神经网络,它十分繁琐(GoogLeNet, ResNet)
没有商业支持
3. Torch
没错,说的就是它的开发语言:基于1990 年代诞生于巴西的 Lua,而非机器学习界广泛采用的 Python。其实 Lua 和Python 都属于比较容易入门的语言。但后者明显已经统治了机器学习领域,尤其在学界。而企业界的软件工程师最熟悉的是 Java,对 Lua 也比较陌生。这导致了 Torch 推广的困难。因此,虽然 Torch 功能强大,但并不是大众开发者的菜。
那么它强大在哪里?
- 首先,Torch 非常适用于卷积神经网络。它的开发者认为,Torch 的原生交互界面比其他框架用起来更自然、更得心应手。
- 其次,第三方的扩展工具包提供了丰富的递归神经网络( RNN)模型。
因为这些强项,许多互联网巨头开发了定制版的 Torch,以助力他们的 AI 研究。这其中包括 Facebook、Twitter,和被谷歌招安前的 DeepMind。
兴趣主要在增强学习的开发者, Torch 是首选。
优点:
- 灵活度很高
- 高度模块化
- 容易编写你自己的层级
- 有很多训练好的模型
缺点:
- 需要学 Lua
- 通常需要自己写训练代码
- 不适于循环神经网络
- 没有商业支持
4. SciKit-learn
SciKit-learn 是老牌的开源 Python 算法框架,始于 2007 年的 Google Summer of Code 项目,最初由 David Cournapeau 开发。
它是一个简洁、高效的算法库,提供一系列的监督学习和无监督学习的算法,以用于数据挖掘和数据分析。SciKit-learn 几乎覆盖了机器学习的所有主流算法,这为其在 Python 开源世界中奠定了江湖地位。
它的算法库建立在 SciPy (Scientific Python) 之上——你必须先安装 SciPy 才能使用 SciKit-learn 。它的框架中一共包括了:
- NumPy: 基础的多维数组包
- SciPy: 科学计算的基础库
- Matplotlib: 全面的 2D/3D 测绘
- IPython: 改进的交互控制器
- Sympy: 符号数学
- Pandas:数据结构和分析
它命名的由来:SciPy 的扩展和模块在传统上被命名为 SciKits。而提供学习算法的模组就被命名为 scikit-learn。
优点:
- 经过筛选的、高质量的模型
- 覆盖了大多数机器学习任务
- 可扩展至较大的数据规模
- 使用简单
缺点:
- 灵活性低