在上一篇文章中,我们介绍的魔术《69式数字预言》用到的是单个数字的中心对称性,再往前的《3 or 8》则是一个很巧妙的阿拉伯数字内部的对应关系,相关内容请戳:
文字对称中的数学与魔术(五)——魔术《69式数字预言》
文字对称中的数学与魔术(四)——魔术《3 or 8》
文字对称中的数学与魔术(三)——汉字到中文的对称性
文字对称中的数学与魔术(二)——英文字母到单词的对称性
文字对称中的数学与魔术(一)——阿拉伯数字的对称性
如果你还记得我们最开始的基础介绍,就知道我把语言文字对称其实拆分成了字符本身的对称性以及组成的序列的对称性这两个维度。前面两个作品都是应用的单个字符的对称性,而今天这个作品用到了一个数字序列,和更多的数学性质。
689的预言
视频1 689的预言
这个作品是我在边写这个系列中边想到和改进的,本来是作为在关于排列的一节数学魔术课中的设计。在最后多个结果进行multi-outs展示设计的时候,除了马丁加德纳的经典剪信封系列外,我想到了数字图案之间本身的对称性。本着让数学魔术本身也有足够的魔术价值的想法,于是最后才有了这个作品。
数学原理
除了对称以外的数学部分的原理很简单,是小学水平的3元的排列问题的相关计算就能说明白的,拓展开去的话则是个错排问题。所谓错排,指的是不存在不动点的排列自映射。n个元素的错排数记作!n或Dn。它可以通过递推关系来计算出解析的通项公式和递推关系式,还和指数函数的泰勒展开式有一定关系以形成一种特殊的表达,十分有趣。相关内容我们放在排列相关的章节再展开讲,这里简要说明。
我们直接来看元素数为3的情况。其排列的总数为6种,而由于必须是错排,其真正的可行排列竟然只有213和312这么少的两种而已。这比印象中约摸10种以内的排列要少得多,少得都引起质变了。那就是,少到可以用multi-outs的策略来完成了。
接下来的问题就是如何去搞定231和312这两种结果的统一预言了。观察一下这两个排列,发现他们之间有明显的的关系,那就是是在123作为单位元的循环群的两个元素,二者之间仅差一个相位的平移。因此我马上就想到了利用走马灯数的那个原理来进行不通缺口的剪裁来达到选定需要的数的效果,并且不比信封那样太重的方式,因为只有两个选项,直接用一个内侧写字的封条,两侧作为两个选择的开口,就可以完成了。
上面是描述的我排列课上的版本,强调的是排列与循环群的一些概念的渗透。那还有没有别的方式呢?在我写这个系列的时候,就在边写边想,能否利用数字图案本身的对称性来做到呢?
注意了,我们写的排列213和312,是借助我们文字序列本身的有序排列和数字之间的对应,来代表一类排列,换句话说,排列是抽象的两个相同集合间的一一映射,但是并不指定集合是什么,可以套用在任何集合上。那么问题来了,有没有可能,某三个数字或字母,经过一次可行的中心对称变换,就能映射成仅仅相差一个相位的另一个排列呢?如果有的话,那预言就只需要倒个方向就能看了,明显是比还要剪一刀撕开更棒的效果啊!
我也不太确定,因为中心对称的变换相当于一次翻转加符号自身的中心对称旋转,而前者显然是和循环群的平移不搭的,但不知道加上旋转之后有没有奇迹发生。于是写式子看下呗:序列abc经过中心对称以后得到的序列是c'b'a'。
我们要求c'b'a' = bca,于是有:
b = c'
c = b'
a = a'
惊呆了,居然真的可以!前两个等号是对称的,无非实在说b和c需要互为中心对称图形,第三个式子说a得本身是个对称图形。那显然,bc就是69的组合,而a可以是0,1和8!
于是我选定了968这样一个吉利的数字,转一圈以后是896,再倒回去,我们需要的原始单位元排列就是689了。之所以这么选定,是因为作为依次递增的数字,这样可以比较有理由作为默认的摆法。
而关键还在于,错排让我们仅有2个可能的结果,让这一切都是可行的。
再仔细观察一下这个968,其实规律就很明显了,因为69互为中心对称图形,那么自身形成的子串就是完整的中心对称图形,和另一个中心对称图形8连成的二元序列,作中心对称的话,因为自身值都不变于是就把好好的在二元情况下的翻转操作生生地退化等价为对换操作,也等价为了轮换操作,这才和我们需要的轮换对应了。而这一切,都源于这些数字之间本身的中心对称性的加成。
以上就是这个作品的全部分析,希望你喜欢。
下一篇我们将继续介绍对称文字的佳作,轻轻期待!
视频抢先看!
视频1 the 9
视频2 刘谦春晚《幻境》
视频3 47 or 七九
我们是谁:
MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!