Harmonic Number (LightOJ 1234)(调和级数 或者 区块储存答案)

2023-03-09 16:33:37 浏览数 (1)

题解:隔一段数字存一个答案,在查询时,只要找到距离n最近而且小于n的存答案值,再把剩余的暴力跑一遍就可以。

代码语言:javascript复制
#include <bits/stdc  .h>
using namespace std;

const int N = 1e8   10;
const int M = 2e6   10;
double a[M];

void Init()
{
    a[0] = 0.0;
    double ans = 1;
    for( int i = 2; i < N; i   )
    {
        ans  = 1.0 / i;
        if(i % 50 == 0)
        {
            a[i/50] = ans;
        }
    }
    return ;
}

int main()
{
    int t,n,cas = 0;
    Init();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        int now = n / 50;
        double ans = a[now];
        for(int i = now*50   1; i <= n; i   )
        {
            ans  = 1.0 / i;
        }
        printf("Case %d: %.9lfn",  cas,ans);
    }
    return 0;
}

数论正解: 知识点:      调和级数(即f(n))至今没有一个完全正确的公式,但欧拉给出过一个近似公式:(n很大时)       f(n)≈ln(n) C 1/2*n           欧拉常数值:C≈0.57721566490153286060651209       c math库中,log即为ln。 (转自:https://www.cnblogs.com/shentr/p/5296462.html)     因为公式存在误差,在数值n比较小的时候直接暴力求解。

代码语言:javascript复制
/** 转自:https://www.cnblogs.com/shentr/p/5296462.html */
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double r=0.57721566490153286060651209;     //欧拉常数
double a[10000];

int main()
{
    a[1]=1;
    for (int i=2;i<10000;i  )
    {
        a[i]=a[i-1] 1.0/i;
    }
    int n;
    cin>>n;
    for (int kase=1;kase<=n;kase  )
    {
        int n;
        cin>>n;
        if (n<10000)
        {
            printf("Case %d: %.10lfn",kase,a[n]);
        }
        else
        {
            double a=log(n) r 1.0/(2*n);
            //double a=log(n 1) r;
            printf("Case %d: %.10lfn",kase,a);
        }
    }
    return 0;
}

Problem

In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:

In this problem, you are given n, you have to find Hn.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases. Each case starts with a line containing an integer n (1 ≤ n ≤ 108).

Output

For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.

Sample Input

12 1 2 3 4 5 6 7 8 9 90000000 99999999 100000000

Sample Output

Case 1: 1 Case 2: 1.5 Case 3: 1.8333333333 Case 4: 2.0833333333 Case 5: 2.2833333333 Case 6: 2.450 Case 7: 2.5928571429 Case 8: 2.7178571429 Case 9: 2.8289682540 Case 10: 18.8925358988 Case 11: 18.9978964039 Case 12: 18.9978964139

0 人点赞