线性素数筛(欧拉筛)(超级好的MuBan)

2023-03-09 16:36:29 浏览数 (1)

Problem:找出小于等于n的所有素数的个数。

代码语言:javascript复制
#include <bits/stdc  .h>

using namespace std;
const int maxn = 1e6;

int prime[maxn];  // 欧拉线性素数筛,O(n)
bool vis[maxn];   // 标记

int Prime(int n)  
{
    memset(vis,false,sizeof(vis));
    int cnt = 0;                
    vis[0] = vis[1] = true;
    for(int i = 2; i <= n; i   )
    {
        if(!vis[i])prime[cnt  ] = i;         
        for(int j = 0; j < cnt && i*prime[j] <= n; j   )
        {
            vis[i*prime[j]] = true;
            if(!(i%prime[j])) break;
        }
    }
    return cnt;
}

int main()
{
    int n;
    cin >> n;
    int ans = 0;
    ans = Prime(n);
    cout << ans << endl;
    return 0;
}

if(i % prime[j] == 0) break; 解释:       首先,任何合数都能表示成多个素数的积。所以,任何的合数肯定有一个最小质因子。我们通过这个最小质因子就可以判断什么时候不用继续筛下去了。       当i是prime[j]的整数倍时(i % prime[j] == 0),i*prime[j 1]肯定被筛过,跳出循环。       因为i可以看做prime[j]*某个数, i*prime[j 1]就可以看做 prime[j]*某个数*prime[j 1] 。而 prime[j] 必定小于 prime[j 1], 所以 i*prime[j 1] 必定已经被 prime[j]*某个数 筛掉,就不用再做了√       同时我们可以发现在满足程序里的两个条件的时候,prime[j]必定是prime[j]*i的最小质因子。这个性质在某些题里可以用到。       这样就可以在线性时间内找到素数啦~(≧▽≦)/~ 解释转自https://blog.csdn.net/tianwei0822/article/details/78309453

0 人点赞