微服务链路追踪有哪些_微服务网关原理

2022-11-01 17:19:51 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

目录

Sleuth简介

相关术语

使用Sleuth

引入依赖

创建服务

product-service

order-service

启动&测试

Zipkin

使用Zipkin

参考文章


Sleuth简介

Sleuth是Spring Cloud的组件之一,它为Spring Cloud实现了一种分布式追踪解决方案,兼容Zipkin,HTrace和其他基于日志的追踪系统,例如 ELK(Elasticsearch 、Logstash、 Kibana)。

相关术语

Sleuth引入了许多 Dapper中的术语:

Span —- 基本的工作单元。无论是发送一个RPC或是向RPC发送一个响应都是一个Span。每一个Span通过一个64位ID来进行唯一标识,并通过另一个64位ID对Span所在的Trace进行唯一标识。

Span能够启动和停止,他们不断地追踪自身的时间信息,当你创建了一个Span,你必须在未来的某个时刻停止它。

提示:启动一个Trace的初始化Span被叫作 Root Span ,它的 Span ID 和 Trace Id 相同。

Trace —- 由一系列Span 组成的一个树状结构。例如,如果你要执行一个分布式大数据的存储操作,这个Trace也许会由你的PUT请求来形成。

Annotation:用来及时记录一个事件的存在。通过引入 Brave 库,我们不用再去设置一系列的特别事件,从而让 Zipkin 能够知道客户端和服务器是谁、请求是从哪里开始的、又到哪里结束。出于学习的目的,还是把这些事件在这里列举一下:

cs (Client Sent) – 客户端发起一个请求,这个注释指示了一个Span的开始。

sr (Server Received) – 服务端接收请求并开始处理它,如果用 sr 时间戳减去 cs 时间戳便能看出有多少网络延迟。

ss(Server Sent)- 注释请求处理完成(响应已发送给客户端),如果用 ss 时间戳减去sr 时间戳便可得出服务端处理请求耗费的时间。

cr(Client Received)- 预示了一个 Span的结束,客户端成功地接收到了服务端的响应,如果用 cr 时间戳减去 cs 时间戳便可得出客户端从服务端获得响应所需耗费的整个时间。

下图展示了一个系统中的 Span 和 Trace 大概的样子:

颜色相同的注释表示是同一个Span(这里一共有7个Span,编号从 A到G),以下面这个注释为例:

代码语言:javascript复制
Trace Id = X
Span Id = D
Client Sent

这个注释表示当前Span的Trace Id 为 X,Span Id 为 D,同时,发生了 Client Sent 事件。

下图展示了父子关系的Span的调用链路:

使用Sleuth

为了确保你的应用名称能够在Zipkin中正确显示,你需要先在Springboot的核心配置文件中对spring.application.name 属性进行配置。

引入依赖

如果你只想使用SpringCloud Sleuth 而不想与 Zipkin 做集成,引入如下依赖:

代码语言:javascript复制
	<dependencies>
		<!-- Sleuth 依赖 -->
		<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>spring-cloud-starter-sleuth</artifactId>
		</dependency>
	</dependencies>

	<dependencyManagement>
		<dependencies>
			<!-- SpringCloud 版本控制依赖 -->
			<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-dependencies</artifactId>
				<version>${spring-cloud.version}</version>
				<type>pom</type>
				<scope>import</scope>
			</dependency>
		</dependencies>
	</dependencyManagement>

如果你想通过 HTTP 将 SpringCloud Sleuth 与 Zipkin做集成,引入如下依赖:

代码语言:javascript复制
	<dependencies>
		<!-- Zipkin 依赖 -->
		<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>spring-cloud-starter-zipkin</artifactId>
		</dependency>
	</dependencies>

	<dependencyManagement>
		<dependencies>
			<!-- SpringCloud 版本控制依赖 -->
			<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-dependencies</artifactId>
				<version>${spring-cloud.version}</version>
				<type>pom</type>
				<scope>import</scope>
			</dependency>
		</dependencies>
	</dependencyManagement>

如果你想使用RabbitMQ 或者Kafka 替代 HTTP ,需先引入 spring-rabbit 或者 spring-kafka 依赖。默认的目标名称是 zipkin 。如果你使用的是Kafka ,必须设置相应的 spring.zipkin.sender.type 属性:

代码语言:javascript复制
spring.zipkin.sender.type: kafka

注意:spring-cloud-sleuth-stream已经过期并且和这些目标不兼容。

如果你使用的是RabbitMQ,需要添加 spring-cloud-starter-zipkinspring-rabbit 依赖。

代码语言:javascript复制
	<dependencyManagement>
		<dependencies>
			<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-dependencies</artifactId>
				<version>${release.train.version}</version>
				<type>pom</type>
				<scope>import</scope>
			</dependency>
		</dependencies>
	</dependencyManagement>

	<dependency>
		<groupId>org.springframework.cloud</groupId>
		<artifactId>spring-cloud-starter-zipkin</artifactId>
	</dependency>
	<dependency>
		<groupId>org.springframework.amqp</groupId>
		<artifactId>spring-rabbit</artifactId>
	</dependency>

为了示例,这里我们使用Sleuth Zipkin的默认配置,在需要进行链路追踪的所有服务端添加如下配置:

代码语言:javascript复制
	<parent>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-parent</artifactId>
		<version>2.0.6.RELEASE</version>
	</parent>

	<properties>
		<spring-cloud.version>Finchley.SR2</spring-cloud.version>
	</properties>

	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-web</artifactId>
		</dependency>
		<!-- Eureka-Server 依赖 -->
		<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
		</dependency>
		<!-- Feign 依赖 -->
		<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>spring-cloud-starter-openfeign</artifactId>
		</dependency>
		<!-- Sleuth Zipkin 依赖 -->
		<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>spring-cloud-starter-zipkin</artifactId>
		</dependency>
	</dependencies>

	<dependencyManagement>
		<dependencies>
			<!-- SpringCloud 版本控制依赖 -->
			<dependency>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-dependencies</artifactId>
				<version>${spring-cloud.version}</version>
				<type>pom</type>
				<scope>import</scope>
			</dependency>
		</dependencies>
	</dependencyManagement>

创建服务

如图所示,创建order-service和product-service两个服务,并在order-service中通过Feign对product-service进行远程调用。

product-service

在product-service的controller中提供一个商品服务:

代码语言:javascript复制
@RestController
@RequestMapping("/api/v1/product")
public class ProductController {

	private final Logger logger = LoggerFactory.getLogger(getClass());

	/**
	 * 商品服务
	 */
	@GetMapping("/service")
	public String productService() {
		logger.info("Product Service Is Called...");
		return "Product Service Is Called...";
	}
}

order-service

由于需要在 order-service 中调用product-service,先创建一个ProductClient:

代码语言:javascript复制
@FeignClient(name = "product-service")
public interface ProductClient {

	@GetMapping("/api/v1/product/service")
	public String productService();

}

为了示例简单,我们直接在order-service的controller中通过ProductClient对product-service进行调用:

代码语言:javascript复制
@RestController
@RequestMapping("/api/v1/order")
public class OrderController {

	private final Logger logger = LoggerFactory.getLogger(getClass());

	@Autowired
	private ProductClient productClient;

	@GetMapping(value = "/service")
	public String orderService() {
		logger.info("Order Service Is Called...");
		String ret = productClient.productService();
		logger.info(ret.toString());
		return "Order Service Is Called...";
	}
}

启动&测试

按照以下顺序启动应用进行测试:

代码语言:javascript复制
==>启动Eureka注册中心,端口号 8761

==>分别通过8771和8781两个端口启动product-service和order-service两个服务

启动完成之后,Eureka注册中心中注册的服务列表如下:

在浏览器中输入以下地址: http://localhost:8781/api/v1/order/service,返回如下内容:

同时,在order-service后台打印如下日志:

代码语言:javascript复制
2019-02-27 13:49:17.439  INFO [order-service,895caa4daa30bb0a,895caa4daa30bb0a,true] 2812 --- [nio-8781-exec-2] c.pengjunlee.controller.OrderController  : Order Service Is Called...
2019-02-27 13:49:17.465  INFO [order-service,895caa4daa30bb0a,895caa4daa30bb0a,true] 2812 --- [nio-8781-exec-2] c.pengjunlee.controller.OrderController  : Product Service Is Called...

在product-service后台打印如下日志:

代码语言:javascript复制
2019-02-27 13:49:17.448  INFO [product-service,895caa4daa30bb0a,9cd122253ea82104,true] 20736 --- [nio-8771-exec-8] c.p.controller.ProductController         : Product Service Is Called...

正如上面 product-service 和 order-service 中打印的日志所示,Sleuth将Trace Id和Span Id添加到Slf4J MDC(Mapped Diagnostic Context)并在日志中进行了打印,这样,你就能够从日志聚合器中提取任何一个给定的Trace 或者Span 的所有日志了。

接下来,重点解释一下日志中的 [appname,traceId,spanId,exportable] 各部分所代表的含义:

appname:记录日志的应用的名称,即spring.application.name的值;

traceId:Sleuth为一次请求链路生成的唯一ID,一个Trace中可以包含多个Span;

spanId:请求链路基本的工作单元,代表发生一次特定的操作,例如:发送一个Http请求;

exportable:是否需要将日志导出到 Zipkin;

Sleuth提供了对常见分布式链路追踪数据模型的抽象:Trace、Span、Annotation和键值对Annotation。Spring-Cloud-Sleuth虽然基于htrace,但与Zipkin(dapper)也兼容。

Sleuth记录时间信息以帮助进行延迟分析。通过使用sleuth,您可以查明应用程序中延迟的原因。

当spring-cloud-sleuth-zipkin包含在classpath中时,应用程序将生成并收集与zipkin兼容的追踪记录。默认情况下,会通过HTTP将它们发送到本地主机(端口9411)上的Zipkin服务器。您可以通过设置spring.zipkin.baseurl来配置服务的地址。

如果你依赖的是spring-rabbit,那么应用程序会将追踪记录发送到Rabbit MQ代理,而不是HTTP。

如果你依赖的是spring-kafka,并设置了spring.zipkin.sender.type:kafka,那么应用程序会将追踪记录发送到Kafka代理而不是HTTP。

注意:如果你使用的是Zipkin,请通过设置spring.sleuth.sampler.probability来配置导出Span的概率(默认值:0.1,即10%)。否则,您可能会认为Sleuth不起作用,因为它省略了一些Span。

注意:如果你使用的是SLF4J,Trace和Span的追踪记录默认会被记录到MDC,所以日志的用户可以立刻看到。但如果你使用的是其他的日志系统,你还需要对日志的打印格式进行设置才能看到相同的结果:

代码语言:javascript复制
logging.pattern.level = %5p [${spring.zipkin.service.name:${spring.application.name:-}},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}]

Zipkin

Zipkin是一个分布式系统的APM工具(Application Performance Management),基于Google Dapper 实现。它帮助收集解决微服务架构中延迟问题所需的时间数据,并管理这些数据。和Sleuth结合可以提供可视化Web界面分析调用链路耗时情况。

使用Zipkin

如果你使用的Java版本为JDK 8,可以下载一个Zipkin的独立可执行Jar。

下载地址:

https://search.maven.org/remote_content?g=io.zipkin.java&a=zipkin-server&v=LATEST&c=exec

使用如下命令启动Zipkin:

代码语言:javascript复制
java -jar zipkin-server-2.12.2-exec.jar

启动完成后,访问 http://localhost:9411/zipkin/dependency/ 查看服务的依赖关系。

参考文章

https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#netflix-zuul-starter

https://github.com/openzipkin/brave

https://cloud.spring.io/spring-cloud-static/Finchley.SR2/single/spring-cloud.htmlhttps://cloud.spring.io/spring-cloud-static/Finchley.SR2/single/spring-cloud.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

0 人点赞