Minor GC、Major GC和Full GC有何不同

2022-11-02 15:31:31 浏览数 (3)

1. 三种GC

GC类型

GC区域

触发条件

Stop The World时间

Minor GC

Eden 和 Survivor 区域

Eden区域 > 设定内存阈值

对于大部分应用程序,Minor GC停顿导致的延迟都是可以忽略不计的。 大部分 Eden 区中的对象都能被认为是垃圾,永远也不会被复制到 Survivor 区或者老年代空间。 如果Eden 区大部分新生对象不符合 GC 条件,Minor GC 执行时暂停的时间将会长很多。

Major GC

Old区域

根据不同的垃圾收集器配置由Minor GC触发

MajorGC 的速度一般会比 Minor GC 慢 10倍以上。

Full GC

整个Heap空间包括年轻代和永久代

调用System.gc时Old老年代空间不足方法区空间不足通过Minor GC后进入老年代的平均大小大于老年代的可用内存

Full GC作用于整个堆空间的GC对于STW挂起的时间还是较长的,在系统层面可能有停顿感知,在系统应用使用过程中Full GC不应太频繁,看业务方向保证一周或者更久一次的频率。

2. Major GC vs Full GC

目前,这些术语无论是在 JVM 规范还是在垃圾收集研究论文中都没有正式的定义。但是我们一看就知道这些在我们已经知道的基础之上做出的定义是正确的,Minor GC 清理年轻带内存应该被设计得简单:

Major GC 是清理永久代。

Full GC 是清理整个堆空间—包括年轻代和永久代。

很不幸,实际上它还有点复杂且令人困惑。首先,许多 Major GC 是由 Minor GC 触发的,所以很多情况下将这两种 GC 分离是不太可能的。另一方面,许多现代垃圾收集机制会清理部分永久代空间,所以使用“cleaning”一词只是部分正确。

这使得我们不用去关心到底是叫 Major GC 还是 Full GC,大家应该关注当前的 GC 是否停止了所有应用程序的线程,还是能够并发的处理而不用停掉应用程序的线程。

这种混乱甚至内置到 JVM 标准工具。下面一个例子很好的解释了我的意思。让我们比较两个不同的工具 Concurrent Mark 和 Sweep collector (-XX: UseConcMarkSweepGC)在 JVM 中运行时输出的跟踪记录。

第一次尝试通过 jstat 输出:

1

my-precious: me$ jstat -gc -t 4235 1s

Time S0C S1C S0U S1U EC EU OC OU MC MU CCSC CCSU YGC YGCT FGC FGCT GCT

5.7 34048.0 34048.0 0.0 34048.0 272640.0 194699.7 1756416.0 181419.9 18304.0 17865.1 2688.0 2497.6 3 0.275 0 0.000 0.275

6.7 34048.0 34048.0 34048.0 0.0 272640.0 247555.4 1756416.0 263447.9 18816.0 18123.3 2688.0 2523.1 4 0.359 0 0.000 0.359

7.7 34048.0 34048.0 0.0 34048.0 272640.0 257729.3 1756416.0 345109.8 19072.0 18396.6 2688.0 2550.3 5 0.451 0 0.000 0.451

8.7 34048.0 34048.0 34048.0 34048.0 272640.0 272640.0 1756416.0 444982.5 19456.0 18681.3 2816.0 2575.8 7 0.550 0 0.000 0.550

9.7 34048.0 34048.0 34046.7 0.0 272640.0 16777.0 1756416.0 587906.3 20096.0 19235.1 2944.0 2631.8 8 0.720 0 0.000 0.720

10.7 34048.0 34048.0 0.0 34046.2 272640.0 80171.6 1756416.0 664913.4 20352.0 19495.9 2944.0 2657.4 9 0.810 0 0.000 0.810

11.7 34048.0 34048.0 34048.0 0.0 272640.0 129480.8 1756416.0 745100.2 20608.0 19704.5 2944.0 2678.4 10 0.896 0 0.000 0.896

12.7 34048.0 34048.0 0.0 34046.6 272640.0 164070.7 1756416.0 822073.7 20992.0 19937.1 3072.0 2702.8 11 0.978 0 0.000 0.978

13.7 34048.0 34048.0 34048.0 0.0 272640.0 211949.9 1756416.0 897364.4 21248.0 20179.6 3072.0 2728.1 12 1.087 1 0.004 1.091

14.7 34048.0 34048.0 0.0 34047.1 272640.0 245801.5 1756416.0 597362.6 21504.0 20390.6 3072.0 2750.3 13 1.183 2 0.050 1.233

15.7 34048.0 34048.0 0.0 34048.0 272640.0 21474.1 1756416.0 757347.0 22012.0 20792.0 3200.0 2791.0 15 1.336 2 0.050 1.386

16.7 34048.0 34048.0 34047.0 0.0 272640.0 48378.0 1756416.0 838594.4 22268.0 21003.5 3200.0 2813.2 16 1.433 2 0.050 1.484

这个片段是 JVM 启动后第17秒提取的。基于该信息,我们可以得出这样的结果,运行了12次 Minor GC、2次 Full GC,时间总跨度为50毫秒。通过 jconsole 或者 jvisualvm 这样的基于GUI的工具你能得到同样的结果。

1

java -XX: PrintGCDetails -XX: UseConcMarkSweepGC eu.plumbr.demo.GarbageProducer

3.157: [GC (Allocation Failure) 3.157: [ParNew: 272640K->34048K(306688K), 0.0844702 secs] 272640K->69574K(2063104K), 0.0845560 secs] [Times: user=0.23 sys=0.03, real=0.09 secs]

4.092: [GC (Allocation Failure) 4.092: [ParNew: 306688K->34048K(306688K), 0.1013723 secs] 342214K->136584K(2063104K), 0.1014307 secs] [Times: user=0.25 sys=0.05, real=0.10 secs]

... cut for brevity ...

11.292: [GC (Allocation Failure) 11.292: [ParNew: 306686K->34048K(306688K), 0.0857219 secs] 971599K->779148K(2063104K), 0.0857875 secs] [Times: user=0.26 sys=0.04, real=0.09 secs]

12.140: [GC (Allocation Failure) 12.140: [ParNew: 306688K->34046K(306688K), 0.0821774 secs] 1051788K->856120K(2063104K), 0.0822400 secs] [Times: user=0.25 sys=0.03, real=0.08 secs]

12.989: [GC (Allocation Failure) 12.989: [ParNew: 306686K->34048K(306688K), 0.1086667 secs] 1128760K->931412K(2063104K), 0.1087416 secs] [Times: user=0.24 sys=0.04, real=0.11 secs]

13.098: [GC (CMS Initial Mark) [1 CMS-initial-mark: 897364K(1756416K)] 936667K(2063104K), 0.0041705 secs] [Times: user=0.02 sys=0.00, real=0.00 secs]

13.102: [CMS-concurrent-mark-start]

13.341: [CMS-concurrent-mark: 0.238/0.238 secs] [Times: user=0.36 sys=0.01, real=0.24 secs]

13.341: [CMS-concurrent-preclean-start]

13.350: [CMS-concurrent-preclean: 0.009/0.009 secs] [Times: user=0.03 sys=0.00, real=0.01 secs]

13.350: [CMS-concurrent-abortable-preclean-start]

13.878: [GC (Allocation Failure) 13.878: [ParNew: 306688K->34047K(306688K), 0.0960456 secs] 1204052K->1010638K(2063104K), 0.0961542 secs] [Times: user=0.29 sys=0.04, real=0.09 secs]

14.366: [CMS-concurrent-abortable-preclean: 0.917/1.016 secs] [Times: user=2.22 sys=0.07, real=1.01 secs]

14.366: [GC (CMS Final Remark) [YG occupancy: 182593 K (306688 K)]14.366: [Rescan (parallel) , 0.0291598 secs]14.395: [weak refs processing, 0.0000232 secs]14.395: [class unloading, 0.0117661 secs]14.407: [scrub symbol table, 0.0015323 secs]14.409: [scrub string table, 0.0003221 secs][1 CMS-remark: 976591K(1756416K)] 1159184K(2063104K), 0.0462010 secs] [Times: user=0.14 sys=0.00, real=0.05 secs]

14.412: [CMS-concurrent-sweep-start]

14.633: [CMS-concurrent-sweep: 0.221/0.221 secs] [Times: user=0.37 sys=0.00, real=0.22 secs]

14.633: [CMS-concurrent-reset-start]

14.636: [CMS-concurrent-reset: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

在点头同意这个结论之前,让我们看看来自同一个 JVM 启动收集的垃圾收集日志的输出。显然- XX : PrintGCDetails 告诉我们一个不同且更详细的故事:

基于这些信息,我们可以看到12次 Minor GC 后开始有些和上面不一样了。没有运行两次 Full GC,这不同的地方在于单个 GC 在永久代中不同阶段运行了两次:

  • 最初的标记阶段,用了0.0041705秒也就是4ms左右。这个阶段会暂停“全世界( stop-the-world)”的事件,停止所有应用程序的线程,然后开始标记。
  • 并行执行标记和清洗阶段。这些都是和应用程序线程并行的。
  • 最后 Remark 阶段,花费了0.0462010秒约46ms。这个阶段会再次暂停所有的事件。
  • 并行执行清理操作。正如其名,此阶段也是并行的,不会停止其他线程。

所以,正如我们从垃圾回收日志中所看到的那样,实际上只是执行了 Major GC 去清理老年代空间而已,而不是执行了两次 Full GC。

如果你是后期做决 定的话,那么由 jstat 提供的数据会引导你做出正确的决策。它正确列出的两个暂停所有事件的情况,导致所有线程停止了共计50ms。但是如果你试图优化吞吐量,你会被误导的。清 单只列出了回收初始标记和最终 Remark 阶段,jstat的输出看不到那些并发完成的工作。

结论

考虑到这种情况,最好避免以 Minor、Major、Full GC 这种方式来思考问题。而应该监控应用延迟或者吞吐量,然后将 GC 事件和结果联系起来。

随着这些 GC 事件的发生,你需要额外的关注某些信息,GC 事件是强制所有应用程序线程停止了还是并行的处理了部分事件。

0 人点赞