从numpy中导入tensor torch.from_numpy(data) 或 torch.from_numpy(data).to(a.device) 也可以用torch.tensor(data), 但torch.from_numpy更加安全,使用tensor.Tensor在非float类型下会与预期不符 以前是整型,导入就是整型。以前是浮点型,导入就是浮点型
注意,torch.from_numpy()这种方法互相转的Tensor和numpy对象共享内存,所以它们之间的转换很快,而且几乎不会消耗资源。这也意味着,如果其中一个变了,另外一个也会随之改变。
图片的numpy转tensor 注意,读取图片成numpy array的范围是[0,255]是uint8 而转成tensor的范围就是[0,1.0], 是float 所以图片的numpy转tensor有些不一样 如果是直接按照上面的方法 x = torch.from_array(x), 得到的tensor值是0-255的 得到0-1.0的话 import torchvision.transforms as transforms import matplotlib.pyplot as plt img = plt.imread('wave.jpg') print(img.shape) # numpy数组格式为(H,W,C) img_tensor = transforms.ToTensor()(img) # tensor数据格式是torch(C,H,W) print(img_tensor.size()) import torchvision.transforms as transforms import cv2 img = cv2.imread('image/000001.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) print(img.shape) # numpy数组格式为(H,W,C) img_tensor = transforms.ToTensor()(img) # tensor数据格式是torch(C,H,W) print(img_tensor.size()) 而且同时还会把(h,w,c)转成(c,h,w)
tensor转numpy b = a.numpy() b = a.clone().detach().cpu().numpy() 注意,torch.from_numpy()这种方法互相转的Tensor和numpy对象共享内存,所以它们之间的转换很快,而且几乎不会消耗资源。这也意味着,如果其中一个变了,另外一个也会随之改变。
图片的tensor转numpy 如果tensor是0-1.0的话 x = x.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy() 如果tensor是0-255的话 x = x.permute(1, 2, 0).to('cpu', torch.uint8).numpy()
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/180503.html原文链接:https://javaforall.cn