大家好,又见面了,我是你们的朋友全栈君。
前言
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。
PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取
python免费学习资料以及群交流解答点击即可加入
教程前面章节曾介绍过 JSON 格式的数据,这种格式的数据通常会被转换为 Python 的 list 列表或 dict 字典。本节展示的是世界各国历年 GDP 总和,数据来源于 https://datahub.io 网站。数据格式如下:
[{“Country Code”:”ARB”,”Country Name”:”Arab World”,
“Value”:25760683041.0857,”Year”:1968},
{“Country Code:”ARB”, “country Name”:”Arab World”,
“Value”:28434203615.4829, “Year”:1969},
…
]
上面的 JSON 格式数据被保存在方括号内,这些数据将会被转换为 Python 的 list 列表,而 list 列表的每个元素将会是一个 dict 对象。
使用 Python 的 json 模块读取 JSON 数据非常简单,只要使用 load() 函数加载 JSON 数据即可。下面程序示范了读取 2016 年中国的 GDP 值:
上面程序中,第 6 行代码调用 json 模块的 load() 函数加载 JSON 数据,该函数将会返回一个 list 列表,接下来程序遍历该 list 列表即可访问到指定年份、指定国家的 GDP 值。
运行上面程序,可以看到如下输出结果:
China 11199145157649.2
在掌握了使用 json 模块读取这份 JSON 数据的方法之后,接下来我们将会从中读取从 2001 年到 2016 年中国、美国、日本、俄罗斯、加拿大这 5 个国家的 GDP 数据,并使用柱状图进行对比。
下面程序将会使用 Matplotlib 生成柱状图来展示这 5 个国家的 GDP 数据:
本程序的重点其实在于前半部分代码,这部分代码控制程序从 JSON 数据中只读取中国、美国、日本、俄罗斯、加拿大这 5 个国家的数据,且只读取从 2001 年到 2016 年的 GDP 数据,因此程序处理起来稍微有点麻烦(程序先以年份为 key 的 dict(如程序中 country_gdps 列表的元素所示)来保存各国的 GDP 数据。
但由于 Matplotlib 要求被展示数据是 list 列表,因此上面程序中的第 26、28 两行代码使用循环依次读取从 2001 年到 2016 年的 GDP 数据,并将这些数据添加到 country_gdp_list 列表的元素中。这样就把 dict 形式的 GDP 数据转换成 list 形式的 GDP 数据。
上面程序中的第 35、37 两行代码采用循环添加了 5 组柱状图,接下来程序还在中国、美国的条柱上绘制了 GDP 值。
运行上面程序,可以看到如图 1 所示的柱状图。
图 1 从 2001 年到 2016 年各国GDP 对比柱状图
如果通过 https://datahub.io 网站下载了世界各国人口数据,就可以计算出以上各国的人均 GDP。下面程序会使用 Pygal 来展示世界各国的人均 GDP 数据。
上面程序中,第 11 行代码加载了一份新的关于人口数据的 JSON 文件,这样程序即可通过该文件获取世界各国历史的人口数据。第 28 行代码使用 GDP 总值除以该国的人口数量,这样就可以得到该国的人均 GDP。
此程序的后半部分代码创建了 pygal.Bar 对象,并使用循环为该对象添加了各国人均 GDP 数据,这样该柱状图就可以展示各国的人均 GDP 值。
运行上面程序,可以看到如图 2 所示的柱状图。
图 2 从 2001 年到 2016 年各国人均 GDP 对比柱状图
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/182717.html原文链接:https://javaforall.cn