神经网络学习(十三)卷积神经网络的MATLAB实现

2022-11-08 19:13:18 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

系列博客是博主学习神经网络中相关的笔记和一些个人理解,仅为作者记录笔记之用,不免有很多细节不对之处。博主用Numpy实现了一个小巧的深度学习框架kitorch,可以方便实现CNN: MNIST例子。请不要再私信我要matlab的代码了。

卷积神经网络回顾

上一节,我们简单探讨了卷积神经网络的反向传播算法,本节我们着手实现了一个简单的卷积神经网,在此之前先以最基本的批量随机梯度下降法 L2正则化对对卷积神经网络的反向传播算法做一个很简单回顾。

需要确定参数有:

  • 小批量数据的大小 m m m
  • CNN模型的层数 L L L 和所有隐藏层的类型
  • 对于卷积层,要定义卷积核的大小 k k k,卷积核子矩阵的维度 d d d,填充大小 p p p,步幅 s s s
  • 对于池化层,要定义池化区域大小 h h h 和池化标准(max 或者 mean)
  • 对于全连接层,要定义全连接层的激活函数和各层的神经元个数
  • 对于输出层,要定义输出函数和代价函数,多分类任务一般采用 softmax 函数和交叉熵代价函数 C = y ln ( a ) C = ytexttt{ln}(a) C=yln(a)
  • 超参数:学习速率 η eta η, 惩罚系数 λ lambda λ,最大迭代次数 max_iter, 和停止条件 ϵ epsilon ϵ

计算步骤

  1. 初始化每个隐含层的 W , b W,b W,b 的值为随机数。一般可以采用标准正态分布进行初始化(选用 1 ( n i n ) dfrac{ 1}{sqrt{(n_{in})}} (nin​) ​1​ 进行来缩放优化初始值),也可以采用 ( − ξ , ξ ) (-xi, xi) (−ξ,ξ) 的均匀分布( ξ xi ξ 取小值) 2.正向传播 2.1).将输入数据 x x x 赋值于输入神经元 a 1 , a 1 = x a^1, a^1 = x a1,a1=x 2.2).从第二层开始,根据下面3种情况进行前向传播计算:
    • 如果当前是全连接层:则有 a l = σ ( z l ) = σ ( W l a l − 1 b l ) a^{l} = sigma(z^{l}) = sigma(W^la^{l-1} b^{l}) al=σ(zl)=σ(Wlal−1 bl)
    • 如果当前是卷积层:则有 a l = σ ( z l ) = σ ( W l ∗ a l − 1 b l ) a^{l} = sigma(z^{l}) = sigma(W^l*a^{l-1} b^{l}) al=σ(zl)=σ(Wl∗al−1 bl)
    • 如果当前是池化层:则有 a l = pool ( a l − 1 ) a^{l}= texttt{pool}(a^{l-1}) al=pool(al−1)

    2.3).对于输出层第 L L L 层,计算输出 a L = softmax ( z l ) = softmax ( W l a l − 1 b l ) a^{L}= texttt{softmax}(z^{l}) = texttt{softmax}(W^la^{l-1} b^{l}) aL=softmax(zl)=softmax(Wlal−1 bl)

3. 反向传播 3.1).通过损失函数计算输出层的 δ L delta^L δL 3.2).从倒数第二层开始,根据下面3种情况逐层进行反向传播计算:

  • 如果当前是全连接层:则有 δ l = ( W l 1 ) T δ l 1 ⊙ σ ′ ( z l ) delta^{l} = (W^{l 1})^Tdelta^{l 1}odot sigma^{‘}(z^{l}) δl=(Wl 1)Tδl 1⊙σ′(zl)
  • 如果上层是卷积层:则有 δ l = δ l 1 ∗ rot180 ( W l 1 ) ⊙ σ ′ ( z l ) delta^{l} = delta^{l 1}*texttt{rot180}(W^{l 1}) odot sigma^{‘}(z^{l}) δl=δl 1∗rot180(Wl 1)⊙σ′(zl)
  • 如果上层是池化层:则有 δ l = upsample ( δ l 1 ) ⊙ σ ′ ( z l ) delta^{l} = texttt{upsample}(delta^{l 1})odot sigma^{‘}(z^{l}) δl=upsample(δl 1)⊙σ′(zl)。

4. 根据以下两种情况进行模型更新: 4.1).如果当前是全连接层: W l = ( 1 − η λ n ) W l − η m ∑ [ δ l ( a l − 1 ) T ] W^l = left(1-frac{etalambda}{n}right)W^l -frac{eta}{m} sum left[ delta^{l}(a^{ l-1})^Tright] Wl=(1−nηλ​)Wl−mη​∑[δl(al−1)T] b l = b l − η m ∑ ( δ l ) b^l = b^l -frac{eta}{m} sum left( delta^{l} right) bl=bl−mη​∑(δl)4.2).如果当前是卷积层,对于每一个卷积核有: W l = ( 1 − η λ n ) W l − η m ∑ [ δ l ∗ rot90 ( a l − 1 , 2 ) ] W^l = left(1-frac{etalambda}{n}right)W^l – frac{eta}{m} sum left[ delta^{l}*texttt{rot90}(a^{ l-1},2)right] Wl=(1−nηλ​)Wl−mη​∑[δl∗rot90(al−1,2)] b l = b l − η m ∑ [ mean ( δ l ) ] b^l = b^l – frac{eta}{m} sum left[ texttt{mean}(delta^{l})right] bl=bl−mη​∑[mean(δl)]

MATLAB实现

限于个人能力,我们目前先实现一个简单的 1 N 结构的卷积神经网络,即 1 个卷积层(包括池化层)和 N个全连接层。下面是这个简单网络的结构

下面对各层做简要的说明: 1、 卷积层:无padding,步幅 stride 设置为 1,激活函数选择ReLU函数 2、 池化层:无padding,池化类型只实现 ‘average’ 方法 3、 展铺层:为方便计算设计的层,属于预先分配的内存空间,作为全连接层的输入 4、 全连接层:激活函数为Sigmoid函数 5、 输出层:分类函数选择Softmax函数,代价函数选择交叉熵代价函数 L2正则化

网络定义的MATLAB代码如下:

代码语言:javascript复制
loadMnistDataScript; %加载数据
ntrain = size(training_data_label,2);
mini_batch_size = 100;
cnn.ntrain = ntrain;
cnn.eta = 1;       %学习速率
cnn.lambda = 5;    %正则化惩罚系数

cnn.layer = {
    % input layer: 'input', mini_size, [height,width] of image
    {'input',mini_batch_size,[28,28]};
    % convlution layer: 'conv', kernel_number, [height,width] of kernel
    {'conv',20,[9,9]};
    % pooling layer: 'pool', pooling_type, [height,width] of pooling area
    {'pool','average',[2,2]};
    % flatten layer: 'flat', a layer for pre-allocated memory
    {'flat'};
    % full connect layer: 'full', neuron number
    {'full',100};
    {'full',100};
    % output layer: 'output', neuron number
    {'output',10};
    };

由于变量过多,将cnn设计为一个结构体,包含的成员变量有 1、cnn.layer:网络结构的定义,元胞数组; 2、cnn.z:每一层的带权输入,元胞数组; 3、cnn.a:每一层的输出,元胞数组; 4、cnn.delta::每一层的误差敏感项,元胞数组; 5、cnn.weights:每一层的权重。元胞数组; 6、cnn.biases:每一层的偏置,元胞数组; 7、cnn.nabla_w:权重的梯度,元胞数组; 8、cnn.nabla_b:偏置的梯度,元胞数组; 9、其他一些超参数 这样每一层包含7个量:带权输入( z z z),输出( a a a),误差( δ delta δ),权重( W W W),偏置( b b b),权重梯度( ∇ W nabla W ∇W),偏置梯度( ∇ b nabla b ∇b)。并不是每一层都实际需要这7个量,不需要的层将其设置为空数组即可,下面是网络初始化的过程,假如第 n n n层为: 1、输入层:

代码语言:javascript复制
a{n} = zeros([ImageHeight, ImageWidth, mini_batch_size])

2、卷积层:

代码语言:javascript复制
ImageHeight = ImageHeight – KernelHeight 1
ImageWidth = ImageWidth– KernelWidth 1
z{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
a{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
delta{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
weights{n} = rand([KernelHeight, KernelWidth, kernel_number])-0.5
nabla_w =zeros( [KernelHeight, KernelWidth, kernel_number])
biases{n} = rand([1, kernel_number])-0.5
nabla_b{n} =zeros( [1, kernel_number])

3、池化层

代码语言:javascript复制
ImageHeight = ImageHeight / KernelHeight
mageWidth = ImageWidth / KernelWidth
a{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])
delta{n} = zeros([ImageHeight, ImageWidth, mini_batch_size, kernel_number])

4、展铺层

代码语言:javascript复制
a{n} = zeros([ImageHeight*ImageWidth* kernel_number, mini_batch_size])
delta{n} = zeros([ImageHeight*ImageWidth* kernel_number, mini_batch_size])

5、全连接层和输出层

代码语言:javascript复制
z{n} = zeros([neuron_number, mini_batch_size])
a{n} = zeros([neuron_number, mini_batch_size])
delta{n} = zeros([neuron_number, mini_batch_size])
weights{n} = rand([neuron_number,prev_layer_neuron_number])-0.5
nabla_w{n} = zeros([neuron_number,prev_layer_neuron_number])
biases{n} = rand([neuron_number,1])-0.5
nabla_b{n} = zeros([neuron_number,1])

下面是详细代码

代码语言:javascript复制
function cnn = cnn_initialize(cnn)
%CNN_INIT initialize the weights and biases, and other parameters
%   
index = 0;
num_layer = numel(cnn.layer);
for in = 1:num_layer
switch cnn.layer{in}{1}
case 'input'
index = index   1;
height = cnn.layer{in}{3}(1);
width = cnn.layer{in}{3}(2);
mini_size = cnn.layer{in}{2};
cnn.weights{index} = [];
cnn.biases{index} = [];
cnn.nabla_w{index} = [];
cnn.nabla_b{index} = [];
%n*n*m
cnn.a{index} = [];
cnn.z{index} = [];
cnn.delta{index} = [];
cnn.mini_size = mini_size;
case 'conv'
index = index   1;
%kernel height, width, number
ker_height = cnn.layer{in}{3}(1);
ker_width = cnn.layer{in}{3}(2);
ker_num = cnn.layer{in}{2};
cnn.weights{index} = grand(ker_height,ker_width,ker_num) - 0.5;
cnn.biases{index} = grand(1,ker_num) - 0.5;
cnn.nabla_w{index} = zeros(ker_height,ker_width,ker_num);
cnn.nabla_b{index} = zeros(1,ker_num);
height = height - ker_height   1;
width = width - ker_width   1;
cnn.a{index} = zeros(height,width,mini_size,ker_num);
cnn.z{index} = zeros(height,width,mini_size,ker_num);
cnn.delta{index} = zeros(height,width,mini_size,ker_num);
case 'pool'
index = index   1;
%kernel height, width, number
ker_height = cnn.layer{in}{3}(1);
ker_width = cnn.layer{in}{3}(2);
cnn.weights{index} = [];
cnn.biases{index} = [];
cnn.nabla_w{index} = [];
cnn.nabla_b{index} = [];
height = height / ker_height;
width = width / ker_width;
cnn.a{index} = zeros(height,width,mini_size,ker_num);
cnn.z{index} = [];
cnn.delta{index} = zeros(height,width,mini_size,ker_num);
case 'flat'
index = index   1;
cnn.weights{index} = [];
cnn.biases{index} = [];
cnn.nabla_w{index} = [];
cnn.nabla_b{index} = [];
cnn.a{index} = zeros(height*width*ker_num,mini_size);
cnn.z{index} = [];
cnn.delta{index} = zeros(height*width*ker_num,mini_size);
case 'full'
index = index   1;
%kernel height, width, number
neuron_num = cnn.layer{in}{2};
neuron_num0 = size(cnn.a{in-1},1);
cnn.weights{index} = grand(neuron_num,neuron_num0) - 0.5;
cnn.biases{index} = grand(neuron_num,1) - 0.5;
cnn.nabla_w{index} = zeros(neuron_num,neuron_num0);
cnn.nabla_b{index} = zeros(neuron_num,1);
cnn.a{index} = zeros(neuron_num,mini_size);
cnn.z{index} = zeros(neuron_num,mini_size);
cnn.delta{index} = zeros(neuron_num,mini_size);
case 'output'
index = index   1;
%kernel height, width, number
neuron_num = cnn.layer{in}{2};
neuron_num0 = size(cnn.a{in-1},1);
cnn.weights{index} = grand(neuron_num,neuron_num0) - 0.5;
cnn.biases{index} = grand(neuron_num,1);
cnn.nabla_w{index} = zeros(neuron_num,neuron_num0);
cnn.nabla_b{index} = zeros(neuron_num,1);
cnn.a{index} = zeros(neuron_num,mini_size);
cnn.z{index} = zeros(neuron_num,mini_size);
cnn.delta{index} = zeros(neuron_num,mini_size);
otherwise
end
end
end

下面是正向计算过程(伪代码),假设第 n n n层为 1、输入层:

代码语言:javascript复制
a{n} = x 

2、卷积层:

代码语言:javascript复制
z{n} = conv(weights{n}*a{n-1}) biases{n} 
a{n} = relu(z{n}) 

3、池化层

代码语言:javascript复制
a{n}=pool(a{n-1}) %程序中同样使用卷积实现的 

4、展铺层

代码语言:javascript复制
a{n} = reshape(a{n-1}) 

5、全连接层

代码语言:javascript复制
  z{n} = weights{n}*a{n-1} biases{n} 
a{n} = sigmoid(z{n})  

6、输出层

代码语言:javascript复制
z{n} = weights{n}*a{n-1} biases{n} 
a{n} = softmax(z{n}) 

具体代码如下:

代码语言:javascript复制
function cnn = cnn_feedforward(cnn,x)
%CNN_FEEDFORWARD CNN feedforward
%   
num = numel(cnn.layer);
for in = 1:num
switch cnn.layer{in}{1}
case 'input'
cnn.a{in} = x;
case 'conv'
kernel_num = cnn.layer{in}{2};
for ik = 1:kernel_num
cnn.z{in}(:,:,:,ik) = convn(cnn.a{in-1},...
cnn.weights{in}(:,:,ik),'valid') cnn.biases{in}(ik);
end
cnn.a{in} = relu(cnn.z{in});
case 'pool'
ker_h = cnn.layer{in}{3}(1);
ker_w = cnn.layer{in}{3}(2);
kernel = ones(ker_h,ker_w)/ker_h/ker_w;
tmp = convn(cnn.a{in-1},kernel,'valid');
cnn.a{in} = tmp(1:ker_h:end,1:ker_w:end,:,:);
case 'flat'
[height,width,mini_size,kernel_num] = size(cnn.a{in-1});
for ik = 1:mini_size
cnn.a{in}(:,ik) = reshape(cnn.a{in-1}(:,:,ik,:),[height*width*kernel_num,1]);
end
case 'full'
cnn.z{in}= bsxfun(@plus,cnn.weights{in}*cnn.a{in-1},cnn.biases{in});
cnn.a{in} = sigmoid(cnn.z{in});
case 'output'
cnn.z{in}= bsxfun(@plus,cnn.weights{in}*cnn.a{in-1},cnn.biases{in});
cnn.a{in} = softmax(cnn.z{in});
end
end
end

下面是反向计算过程(伪代码),假设第 n n n层为

1、卷积层:

代码语言:javascript复制
delta{n} = upsample(delta{n 1}).*relu_prime(z{n})
nabla_w{n} = conv2(delta{n},rot90(a{n-1},2),'valid')/mini_batch_size
nabla_b{n} = mean(delta{n})

2、池化层

代码语言:javascript复制
delta{n} = reshape(delta{n 1}) 

3、展铺层

代码语言:javascript复制
delta{n} = weights{n 1}'*delta{n 1}

4、全连接层

代码语言:javascript复制
delta{n} = weights{n 1}'*delta{n 1}.*sigmoid_prime(a{n})
nabla_w{n} = delta{n}*a{n-1}'/mini_batch_size
nabla_b{n} = mean(delta{n})

5、输出层

代码语言:javascript复制
delta{n} = a{n}-y 
nabla_w{n} = delta{n}*a{n-1}'/mini_batch_size
nabla_b{n} = mean(delta{n})

下面是反向传播和模型更新部分的 MATLAB 代码

代码语言:javascript复制
function cnn = cnn_backpropagation(cnn,y)
%CNN_BP CNN backpropagation
num = numel(cnn.layer);
for in = num:-1:2
switch cnn.layer{in}{1}
case 'conv'
ker_h = cnn.layer{in 1}{3}(1);
ker_w = cnn.layer{in 1}{3}(2);
kernel = ones(ker_h,ker_w)/ker_h/ker_w;
[~,~,mini_size,kernel_num] = size(cnn.delta{in 1});
cnn.nabla_w{in}(:) = 0;
cnn.nabla_b{in}(:) = 0;
for ik = 1:kernel_num
for im = 1:mini_size
cnn.delta{in}(:,:,im,ik) = kron(cnn.delta{in 1}(:,:,im,ik),kernel).*relu_prime(cnn.z{in}(:,:,im,ik));
cnn.nabla_w{in}(:,:,ik) = cnn.nabla_w{in}(:,:,ik)  ...
conv2(rot90(cnn.a{in-1}(:,:,im),2),cnn.delta{in}(:,:,im,ik),'valid');
cnn.nabla_b{in}(ik) = cnn.nabla_b{in}(ik)   mean(mean(cnn.delta{in}(:,:,im,ik)));
end
cnn.nabla_w{in}(:,:,ik) = cnn.nabla_w{in}(:,:,ik)/mini_size;
cnn.nabla_b{in}(ik) = cnn.nabla_b{in}(ik)/mini_size;
end
case 'pool'
[height,width,mini_size,kernel_num] = size(cnn.a{in});
for ik = 1:mini_size
cnn.delta{in}(:,:,ik,:) = reshape(cnn.delta{in 1}(:,ik),[height,width,kernel_num]);
end
case 'flat'
cnn.delta{in} = cnn.weights{in 1}'*cnn.delta{in 1};
case 'full'
cnn.delta{in}= cnn.weights{in 1}'*cnn.delta{in 1}.*sigmoid_prime(cnn.z{in});
cnn.nabla_w{in} = cnn.delta{in}*(cnn.a{in-1})'/cnn.mini_size;
cnn.nabla_b{in} = mean(cnn.delta{in},2);
case 'output'
cnn.delta{in}= (cnn.a{in} - y);
cnn.nabla_w{in} = cnn.delta{in}*(cnn.a{in-1})'/cnn.mini_size;
cnn.nabla_b{in} = mean(cnn.delta{in},2);
otherwise
end
end
eta = cnn.eta;
lambda = cnn.lambda;
ntrain = cnn.ntrain;
% update models
for in = 1:num
cnn.weights{in} = (1-eta*lambda/ntrain)*cnn.weights{in} - eta*cnn.nabla_w{in};
cnn.biases{in} = (1-eta*lambda/ntrain)*cnn.biases{in} - eta*cnn.nabla_b{in};
end
end

下面是主程序部分

代码语言:javascript复制
cnn = cnn_initialize(cnn);
max_iter = 50000;
for in = 1:max_iter
pos = randi(ntrain-mini_batch_size);
x = training_data(:,:,pos 1:pos mini_batch_size);
y = training_data_label(:,pos 1:pos mini_batch_size);
cnn = cnn_feedforward(cnn,x);
cnn = cnn_backpropagation(cnn,y);
if mod(in,100) == 0
disp(in);
end
if mod(in,5000) == 0
disp(['validtion accuracy: ',num2str(...
cnn_evaluate(cnn,validation_data,validation_data_label)*100), '%']);
end
end

运行结果为

迭代次数为50000次,mini_batch_size = 100,如果按照无放回的随机梯度计算,迭代次数为100个epoch。在校验数据(validation_data)上的识别率最高为 99.02%, 在测试数据(test_data)上的识别率为 99.13%。CNN的效率比较低,单线程迭代50000次,共耗时3个多小时。-_-||。

本节代码可在这里下载到

免费代码在这里呀,由于MATLAB版本的问题,可能会出错哦,自己调整下吧

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/190840.html原文链接:https://javaforall.cn

0 人点赞