任务调度器有哪些_本地计算机上的task scheduler

2022-11-10 15:38:57 浏览数 (1)

TaskScheduler可以看做任务调度的客户端,负责任务的提交,并且请求集群管理器对任务调度。TaskScheduler的类UML图如下,针对不同部署方式会有不同的TaskScheduler与SchedulerBackend进行组合。TaskScheduler类负责任务调度资源的分配,SchedulerBackend负责与Driver、Executor通信收集Executor上分配给该应用的资源使用情况。常见的任务调度模式有以下四种:

  • Local模式:TaskSchedulerImpl LocalBackend
  • Standalone模式:TaskSchedulerImpl StandaloneSchedulerBackend
  • Yarn-Cluster模式:YarnClusterScheduler YarnClusterSchedulerBackend
  • Yarn-Client模式:YarnScheduler YarnClientSchedulerBackend

下面以最常用的Yarn-Cluster模式为例,从以下四个步骤来分析源码实现方式:

  1. TaskScheduler的创建;
  2. Task的提交;

TaskScheduler的创建

TaskScheduler是在SparkContext中定义并启动的:

代码语言:javascript复制
 // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will
 // retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)
 // 需要在createTaskScheduler调用前注册HeartbeatReceiver,因为Executor在构造时就要检索HeartbeatReceiver消息
 _heartbeatReceiver = env.rpcEnv.setupEndpoint(
   HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))
 // master是"spark.master"参数的值,deployMode是"spark.submit.deployMode"参数的值
 // Create and start the scheduler
 // 创建task scheduler,返回(backend, scheduler)的Tuple
 val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
 _schedulerBackend = sched
 _taskScheduler = ts
 // DAGScheduler中保存有taskScheduler的引用,同样构造DAGScheduler时也将自身引用设置到taskScheduler中
 _dagScheduler = new DAGScheduler(this)
 // 向HeartbeatReceiver发送一条SparkContext.taskScheduler已经创建好的消息
 _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)

 // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
 // constructor
 // 在DAGScheduler的构造器中将自身的引用设置到taskScheduler里之后,启动TaskScheduler,
 // 方法中同时也会调用backend.start方法启动backend
 _taskScheduler.start()

TaskScheduler的构建

createTaskScheduler方法会根据master参数匹配部署模式,创建TaskSchedulerImpl,并生成不同的SchedulerBackend(Yarn-Cluster模式:YarnClusterScheduler YarnClusterSchedulerBackend)。

代码语言:javascript复制
 master match {
   case masterUrl =>
     val cm = getClusterManager(masterUrl) match {
       case Some(clusterMgr) => clusterMgr
       case None => throw new SparkException("Could not parse Master URL: '"   master   "'")
     }
     try {
 	  // 利用集群管理器创建TaskScheduler
       val scheduler = cm.createTaskScheduler(sc, masterUrl)
 	  // 利用集群管理器创建SchedulerBackend,并且将scheduler的引用传入
       val backend = cm.createSchedulerBackend(sc, masterUrl, scheduler)
 	  // 内部调用TaskSchedulerImpl.initialize方法将backend引用设置到scheduler中,
 	  // 并根据schedulingMode创建调度管理器FIFOScheduler或者FairScheduler
       cm.initialize(scheduler, backend)
       (backend, scheduler)
     } catch {
       case se: SparkException => throw se
       case NonFatal(e) =>
         throw new SparkException("External scheduler cannot be instantiated", e)
     }
   ...
 }

YarnClusterScheduler和YarnScheduler类构造过程为空,TaskScheduler的构造过程全部在TaskSchedulerImpl中。

代码语言:javascript复制
   // Listener object to pass upcalls into
   // DAGScheduler的引用,在DAGSchedulers构造过程中会将自身引用设置到这里
   var dagScheduler: DAGScheduler = null
   // SchedulerBackend的引用,在initialize方法时会进行设置
   var backend: SchedulerBackend = null
   // 保留MapOutputTrackerMaster的引用,driver中存储map输出结果位置的结构
   val mapOutputTracker = SparkEnv.get.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster]
   // 调度器,在initialize方法中根据schedulingMode创建FIFO或者FAIR调度器,默认为FIFO
   private var schedulableBuilder: SchedulableBuilder = null
   // default scheduler is FIFO
   private val schedulingModeConf = conf.get(SCHEDULER_MODE_PROPERTY, SchedulingMode.FIFO.toString)
   val schedulingMode: SchedulingMode =
     try {
       SchedulingMode.withName(schedulingModeConf.toUpperCase(Locale.ROOT))
     } catch {
       case e: java.util.NoSuchElementException =>
         throw new SparkException(s"Unrecognized $SCHEDULER_MODE_PROPERTY: $schedulingModeConf")
     }
   // 表示资源池或者任务集管理器的可调度实体
   val rootPool: Pool = new Pool("", schedulingMode, 0, 0)
 
   // This is a var so that we can reset it for testing purposes.
   // Runs a thread pool that deserializes and remotely fetches (if necessary) task results.
   // 创建TaskResultGetter,利用线程池远程接收并反序列化Worker上的Executor发送的Task的执行结果
   // 线程池利用Executors.newFixedThreadPool创建的,默认4个线程,线程名字以task-result-getter开头,
   // 可通过spark.resultGetter.threads参数修改
   private[spark] var taskResultGetter = new TaskResultGetter(sc.env, this)

TaskScheduler的初始化

创建完TaskScheduler和SchedulerBackend后,调用YarnClusterManager的initialize方法对其进行初始化,而其实际是调用TaskSchedulerImpl的initialize方法。以默认的FIFO调度为例,TaskSchedulerImpl的初始化过程如下:

设置SchedulerBackend引用。

根据schedulingMode配置来创建FIFOSchedulableBuilder或FairSchedulableBuilder,用来操作Pool中的调度队列。

创建Pool,Pool中缓存了调度队列、调度算法及TaskSetManager集合等信息。

代码语言:javascript复制
  	  def initialize(backend: SchedulerBackend) {
  	    this.backend = backend
  	    schedulableBuilder = {
  	      schedulingMode match {
  	        case SchedulingMode.FIFO =>
  	          new FIFOSchedulableBuilder(rootPool)
  	        case SchedulingMode.FAIR =>
  	          new FairSchedulableBuilder(rootPool, conf)
  	        case _ =>
  	          throw new IllegalArgumentException(s"Unsupported $SCHEDULER_MODE_PROPERTY: "  
  	          s"$schedulingMode")
  	      }
  	    }
  	    schedulableBuilder.buildPools()
  	  }

TaskScheduler的启动

调用TaskScheduler#start方法来启动scheduler,实际调用TaskSchedulerImpl#start方法。

代码语言:javascript复制
   override def start() {
 	// 启动SchedulerBackend,
     backend.start()
 	// 如果不是本地模式且任务并发执行开关打开,则启动一个指定延时后周期调度执行的线程来执行并发任务
 	// 后台启动一个线程检查符合speculation条件的task
     if (!isLocal && conf.getBoolean("spark.speculation", false)) {
       logInfo("Starting speculative execution thread")
       speculationScheduler.scheduleWithFixedDelay(new Runnable {
         override def run(): Unit = Utils.tryOrStopSparkContext(sc) {
           checkSpeculatableTasks()
         }
       }, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)
     }
   }

TaskScheduler与SchedulerBackend的相互引用,TaskScheduler与DAGScheduler相互引用,具体实现的过程如下:

Task的提交

spark任务的操作分为两大类:transformation和action,而只有action操作才会触发真正的job执行。查看源码可以发现所有action操作实际是调用SparkContext.runJob来进行任务的提交,下面是以rdd的collect操作为例展示任务提交的整个调用过程:

DAGScheduler将Stage打包成TaskSet交给TaskScheduler,TaskScheduler会将其封装为TaskSetManager加入到调度队列中(TaskSetManager负责监控管理同一个Stage中的Tasks,TaskScheduler就是以TaskSetManager为单元来调度任务)。TaskScheduler初始化后会启动SchedulerBackend,它负责跟外界打交道,接收Executor的注册信息,并维护Executor的状态。SchedulerBackend在启动后会定期地询问TaskScheduler有没有任务要运行,TaskScheduler会从调度队列中按照指定的调度策略选择TaskSetManager去调度运行,Task提交流程如下图所示。

DAGScheduler将Stage打包成TaskSet交给TaskScheduler,TaskScheduler调用submitTasks方法进行任务调度。

代码语言:javascript复制
 // TaskSchedulerImpl.scala
 override def submitTasks(taskSet: TaskSet) {
     val tasks = taskSet.tasks
 	// 同步代码块
     this.synchronized {
 	  // 创建TaskSet管理器,对同一个TaskSet中的任务进行调度,跟踪每个task的状态,
 	  // 如果失败则重试(最大重试次数maxTaskFailures可通过spark.task.maxFailures设置,默认为4)
 	  // 通过延迟调度的方式为该TaskSet处理位置感知的调度
       val manager = createTaskSetManager(taskSet, maxTaskFailures)
       val stage = taskSet.stageId
 	  // 获取stageId对应<stageAttemptId, TaskSetManager>
       val stageTaskSets =
         taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
 	  // 更新stageAttemptId对应的TaskSetManager关系
       stageTaskSets(taskSet.stageAttemptId) = manager
 	  // 检测冲突,如果同一stageAttemptId对应多个taskSet且当前这个TaskSetManager是僵尸进程,则抛出异常
       val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
         ts.taskSet != taskSet && !ts.isZombie
       }
       if (conflictingTaskSet) {
         throw new IllegalStateException(s"more than one active taskSet for stage $stage:"  
           s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
       }
 	  // 将当前TaskSetManager提交到调度器的调度池Pool中
       schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
 
       if (!isLocal && !hasReceivedTask) {
         starvationTimer.scheduleAtFixedRate(new TimerTask() {
           override def run() {
             if (!hasLaunchedTask) {
               logWarning("Initial job has not accepted any resources; "  
                 "check your cluster UI to ensure that workers are registered "  
                 "and have sufficient resources")
             } else {
               this.cancel()
             }
           }
         }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
       }
       hasReceivedTask = true
     }
 	// 向SchedulerBackend申请资源
     backend.reviveOffers()
 }

通过RpcEnv发送一个请求资源的消息后,CoarseGrainedSchedulerBackend的receive方法则会接收分配到的资源。在该方法中,由于接收到的是ReviveOffers,会调用makeOffers方法开始分配资源。

代码语言:javascript复制
 override def receive: PartialFunction[Any, Unit] = {
   case ReviveOffers =>
 	// 分配资源
     makeOffers()

   ...
 }

为所有executors提供资源分配:CoarseGrainedSchedulerBackend#makeOffers。

代码语言:javascript复制
 private def makeOffers() {
   // Make sure no executor is killed while some task is launching on it
   // 使用同步块,保证在executor上分配任务时executor不会被kill掉
   val taskDescs = CoarseGrainedSchedulerBackend.this.synchronized {
     // Filter out executors under killing
 	// 过滤掉正在被kill的executor,得到所有可用的executors
     val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
     val workOffers = activeExecutors.map { case (id, executorData) =>
       new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
     }.toIndexedSeq
 	// 根据优先级,为task分配Executor上的资源
     scheduler.resourceOffers(workOffers)
   }
   if (!taskDescs.isEmpty) {
 	// 将分配的任务发送到相应的Executor上去执行
     launchTasks(taskDescs)
   }
 }	

根据优先级,为task分配Executor上的资源:TaskSchedulerImpl#resourceOffers。

代码语言:javascript复制
   /**
* Called by cluster manager to offer resources on slaves. We respond by asking our active task
* sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
* that tasks are balanced across the cluster.
* 由cluster manager来调用,为task分配slave节点上的资源
* 根据优先级为task分配资源
* 采用round-robin方式使task均匀分布到集群的各个节点上
*/
def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
// Mark each slave as alive and remember its hostname
// Also track if new executor is added
// 标记每个salve为活跃,并保存它的hostname
// 如果有新executor加入同样也进行跟踪标记
var newExecAvail = false
for (o <- offers) {
if (!hostToExecutors.contains(o.host)) {
hostToExecutors(o.host) = new HashSet[String]()
}
if (!executorIdToRunningTaskIds.contains(o.executorId)) {
hostToExecutors(o.host)  = o.executorId
executorAdded(o.executorId, o.host)
executorIdToHost(o.executorId) = o.host
executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
newExecAvail = true
}
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSet[String]())  = o.host
}
}
// Before making any offers, remove any nodes from the blacklist whose blacklist has expired. Do
// this here to avoid a separate thread and added synchronization overhead, and also because
// updating the blacklist is only relevant when task offers are being made.
// 在做任何分配之前,请从已过期的黑名单中删除黑名单的任何节点
// 此操作是为了避免单独的线程和增加的同步开销,还因为只有在提出任务时更新黑名单才有意义
blacklistTrackerOpt.foreach(_.applyBlacklistTimeout())
val filteredOffers = blacklistTrackerOpt.map { blacklistTracker =>
offers.filter { offer =>
!blacklistTracker.isNodeBlacklisted(offer.host) &&
!blacklistTracker.isExecutorBlacklisted(offer.executorId)
}
}.getOrElse(offers)
// 为避免多个Task集中分配到某些机器上,对这些Task进行随机打散
val shuffledOffers = shuffleOffers(filteredOffers)
// Build a list of tasks to assign to each worker.
// 构建要分配给每个Worker的Task列表
val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
val availableCpus = shuffledOffers.map(o => o.cores).toArray
// 从调度池中获取排好序的TaskSetManager,由调度池确定TaskSet的执行优先级顺序
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
// 如果该executor是新分配来的,则重新计算TaskSetManager的就近原则
if (newExecAvail) {
taskSet.executorAdded()
}
}
// Take each TaskSet in our scheduling order, and then offer it each node in increasing order
// of locality levels so that it gets a chance to launch local tasks on all of them.
// NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
// 以我们的调度顺序执行每个TaskSet,然后按照升序的本地性级别为每个节点分配资源,
// 以便有机会在所有节点上启动本地任务
// 本地性优先级顺序:PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
for (taskSet <- sortedTaskSets) {
var launchedAnyTask = false
var launchedTaskAtCurrentMaxLocality = false
for (currentMaxLocality <- taskSet.myLocalityLevels) {
do {
// 在分配的executor资源上,执行TaskSet中包含的所有task
launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(
taskSet, currentMaxLocality, shuffledOffers, availableCpus, tasks)
launchedAnyTask |= launchedTaskAtCurrentMaxLocality
} while (launchedTaskAtCurrentMaxLocality)
}
if (!launchedAnyTask) {
taskSet.abortIfCompletelyBlacklisted(hostToExecutors)
}
}
if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}

参考文章

  • http://www.cnblogs.com/tovin/p/3879151.html
  • http://sharkdtu.com/posts/spark-scheduler.html
  • https://blog.csdn.net/dabokele/article/details/51932102

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/183135.html原文链接:https://javaforall.cn

0 人点赞