比较CPU和GPU中的矩阵计算

2022-11-11 16:57:27 浏览数 (1)

点击上方“Deephub Imba”,关注公众号,好文章不错过 !

GPU 计算与 CPU 相比能够快多少?在本文中,我将使用 Python 和 PyTorch 线性变换函数对其进行测试。

以下是测试机配置:

CPU:英特尔 i7 6700k (4c/8t) GPU:RTX 3070 TI(6,144 个 CUDA 核心和 192 个 Tensor 核心) 内存:32G 操作系统:Windows 10

无论是cpu和显卡都是目前常见的配置,并不是顶配(等4090能够正常发货后我们会给出目前顶配的测试结果)

NVIDIA GPU 术语解释

CUDA 是Compute Unified Device Architecture的缩写。可以使用 CUDA 直接访问 NVIDIA GPU 指令集,与专门为构建游戏引擎而设计的 DirectX 和 OpenGL 不同,CUDA 不需要用户理解复杂的图形编程语言。但是需要说明的是CUDA为N卡独有,所以这就是为什么A卡对于深度学习不友好的原因之一。

Tensor Cores是加速矩阵乘法过程的处理单元。

例如,使用 CPU 或 CUDA 将两个 4×4 矩阵相乘涉及 64 次乘法和 48 次加法,每个时钟周期一次操作,而Tensor Cores每个时钟周期可以执行多个操作。

上面的图来自 Nvidia 官方对 Tensor Cores 进行的介绍视频

CUDA 核心和 Tensor 核心之间有什么关系?Tensor Cores 内置在 CUDA 核心中,当满足某些条件时,就会触发这些核心的操作。

测试方法

GPU的计算速度仅在某些典型场景下比CPU快。在其他的一般情况下,GPU的计算速度可能比CPU慢!但是CUDA在机器学习和深度学习中被广泛使用,因为它在并行矩阵乘法和加法方面特别出色。

上面的操作就是我们常见的线性操作,公式是这个

这就是PyTorch的线性函数torch.nn.Linear的操作。可以通过以下代码将2x2矩阵转换为2x3矩阵:

代码语言:javascript复制
 import torch
 in_row,in_f,out_f = 2,2,3
 tensor            = torch.randn(in_row,in_f)
 l_trans           = torch.nn.Linear(in_f,out_f)
 print(l_trans(tensor))

CPU 基线测试

在测量 GPU 性能之前,我需要线测试 CPU 的基准性能。

为了给让芯片满载和延长运行时间,我增加了in_row、in_f、out_f个数,也设置了循环操作10000次。

代码语言:javascript复制
 import torch
 import torch.nn
 import timein_row, in_f, out_f = 256, 1024, 2048
 loop_times = 10000

现在,让我们看看CPU完成10000个转换需要多少秒:

代码语言:javascript复制
 s       = time.time()
 tensor  = torch.randn(in_row, in_f).to('cpu')
 l_trans = torch.nn.Linear(in_f, out_f).to('cpu')
 for _ in range(loop_times):
     l_trans(tensor)
 print('cpu take time:',time.time()-s)
 
 #cpu take time: 55.70971965789795

可以看到cpu花费55秒

GPU计算

为了让GPU的CUDA执行相同的计算,我只需将. To (' cpu ')替换为. cuda()。另外,考虑到CUDA中的操作是异步的,我们还需要添加一个同步语句,以确保在所有CUDA任务完成后打印使用的时间。

代码语言:javascript复制
 s       = time.time()
 tensor  = torch.randn(in_row, in_f).cuda()
 l_trans = torch.nn.Linear(in_f, out_f).cuda()
 for _ in range(loop_times):
     l_trans(tensor)
 
 torch.cuda.synchronize()
 print('CUDA take time:',time.time()-s)
 
 #CUDA take time: 1.327127456665039

并行运算只用了1.3秒,几乎是CPU运行速度的42倍。这就是为什么一个在CPU上需要几天训练的模型现在在GPU上只需要几个小时。因为并行的简单计算式GPU的强项

如何使用Tensor Cores

CUDA已经很快了,那么如何启用RTX 3070Ti的197Tensor Cores?,启用后是否会更快呢?在PyTorch中我们需要做的是减少浮点精度从FP32到FP16。,也就是我们说的半精度或者叫混合精度

代码语言:javascript复制
 s       = time.time()
 tensor  = torch.randn(in_row, in_f).cuda().half()
 layer   = torch.nn.Linear(in_f, out_f).cuda().half()
 for _ in range(loop_times):
     layer(tensor)
 torch.cuda.synchronize()
 print('CUDA with tensor cores take time:',time.time()-s)
 
 #CUDA with tensor cores take time:0.5381264686584473

又是2.6倍的提升。

总结

在本文中,通过在CPU、GPU CUDA和GPU CUDA Tensor Cores中调用PyTorch线性转换函数来比较线性转换操作。下面是一个总结的结果:

NVIDIA的CUDA和Tensor Cores确实大大提高了矩阵乘法的性能。

后面我们会有两个方向的更新

1、介绍一些简单的CUDA操作(通过Numba),这样可以让我们了解一些细节

2、我们会在拿到4090后发布一个专门针对深度学习的评测,这样可以方便大家购买可选择

本文作者:Andrew Zhu


MORE

kaggle比赛交流和组队

加我的微信,邀你进群

喜欢就关注一下吧:

点个 在看 你最好看!

0 人点赞