什么是动态规划
动态规划,英文:Dynamic Programming
,简称DP
,将问题分解为互相重叠的子问题,通过反复求解子问题来解决原问题就是动态规划,如果某一问题有很多重叠子问题,使用动态规划来解是比较有效的。
求解动态规划的核心问题是穷举,但是这类问题穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下。动态规划问题一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值。另外,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出正确的「状态转移方程」才能正确地穷举。重叠子问题、最优子结构、状态转移方程就是动态规划三要素
动态规划和其他算法的区别
- 动态规划和分治的区别:动态规划和分治都有最优子结构 ,但是分治的子问题不重叠
- 动态规划和贪心的区别:动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优解,所以它永远是局部最优,但是全局的解不一定是最优的。
- 动态规划和递归的区别:递归和回溯可能存在非常多的重复计算,动态规划可以用递归加记忆化的方式减少不必要的重复计算
动态规划的解题方法
- 递归 记忆化(自顶向下)
- 动态规划(自底向上)
解动态规划题目的步骤
- 根据重叠子问题定义状态
- 寻找最优子结构推导状态转移方程
- 确定dp初始状态
- 确定输出值
斐波那契的动态规划的解题思路
动画过大,点击查看
暴力递归
代码语言:javascript复制//暴力递归复杂度O(2^n)
var fib = function (N) {
if (N == 0) return 0;
if (N == 1) return 1;
return fib(N - 1) fib(N - 2);
};
递归 记忆化
代码语言:javascript复制var fib = function (n) {
const memo = {}; // 对已算出的结果进行缓存
const helper = (x) => {
if (memo[x]) return memo[x];
if (x == 0) return 0;
if (x == 1) return 1;
memo[x] = helper(x - 1) helper(x - 2);
return memo[x];
};
return helper(n);
};
动态规划
代码语言:javascript复制const fib = (n) => {
if (n <= 1) return n;
const dp = [0, 1];
for (let i = 2; i <= n; i ) {
//自底向上计算每个状态
dp[i] = dp[i - 1] dp[i - 2];
}
return dp[n];
};
滚动数组优化
代码语言:javascript复制const fib = (n) => {
if (n <= 1) return n;
//滚动数组 dp[i]只和dp[i-1]、dp[i-2]相关,只维护长度为2的滚动数组,不断替换数组元素
const dp = [0, 1];
let sum = null;
for (let i = 2; i <= n; i ) {
sum = dp[0] dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return sum;
};
动态规划 降维,(降维能减少空间复杂度,但不利于程序的扩展)
代码语言:javascript复制var fib = function (N) {
if (N <= 1) {
return N;
}
let prev2 = 0;
let prev1 = 1;
let result = 0;
for (let i = 2; i <= N; i ) {
result = prev1 prev2; //直接用两个变量就行
prev2 = prev1;
prev1 = result;
}
return result;
};
152. 乘积最大子数组 (medium)
视频讲解:传送门
给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。测试用例的答案是一个 32-位 整数。子数组 是数组的连续子序列。示例 1:输入: nums = 2,3,-2,4 输出: 6 解释: 子数组 2,3 有最大乘积 6。 示例 2:输入: nums = -2,0,-1 输出: 0 解释: 结果不能为 2, 因为 -2,-1 不是子数组。提示:1 <= nums.length <= 2 * 104 -10 <= numsi <= 10 nums 的任何前缀或后缀的乘积都 保证 是一个 32-位 整数
方法1.动态规划
- 思路:
- 状态定义:
dp[i][0]
表示从第 0 项到第 i 项范围内的子数组的最小乘积,dp[i][1]
表示从第 0 项到第 i 项范围内的子数组的最大乘积 - 初始状态:
dp[0][0]=nums[0], dp[0][1]=nums[0]
- 分情况讨论:
- 不和别人乘,就 `nums[i]`自己
- `num[i]` 是负数,希望乘上前面的最大积
- `num[i]` 是正数,希望乘上前面的最小积
- 状态转移方程:
- **dp[i] [0]=min(dp[i−1] [0]∗num[i] , dp[i−1] [1] ∗ num[i], num[i])**
- **dp[i] [1]=max(dp[i−1] [0]∗num[i] , dp[i−1] [1] ∗ num[i], num[i])**
- 状态压缩:
dp[i][x]
只与dp[i][x]-1
,所以只需定义两个变量,prevMin = nums[0]
,prevMax = nums[0]
- 状态压缩之后的方程:
- **prevMin = Math.min(prevMin * num[i], prevMax * num[i], nums[i])**
- **prevMax = Math.max(prevMin * num[i], prevMax * num[i], nums[i])**
- 复杂度:时间复杂度
O(n)
,空间复杂度O(1)
js:
代码语言:javascript复制var maxProduct = (nums) => {
let res = nums[0]
let prevMin = nums[0]
let prevMax = nums[0]
let temp1 = 0, temp2 = 0
for (let i = 1; i < nums.length; i ) {
temp1 = prevMin * nums[i]
temp2 = prevMax * nums[i]
prevMin = Math.min(temp1, temp2, nums[i])
prevMax = Math.max(temp1, temp2, nums[i])
res = Math.max(prevMax, res)
}
return res
}
322. 零钱兑换 (medium)
视频讲解:传送门
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。你可以认为每种硬币的数量是无限的。示例 1:输入:coins = 1, 2, 5, amount = 11 输出:3 解释:11 = 5 5 1 示例 2:输入:coins = 2, amount = 3 输出:-1 示例 3:输入:coins = 1, amount = 0 输出:0提示:1 <= coins.length <= 12 1 <= coinsi <= 231 - 1 0 <= amount <= 104
不能用贪心做,反例,coins=[1, 3, 5, 6, 7]
,amount=30
,用贪心先用最大的面额7,在用2个1,4 * 7 2 * 1 = 30
,但是我们用5个6,5 * 6 = 30
就能用最少的硬币兑换完成
方法1.动态规划
- 思路:
dp[i]
表示兑换面额i
所需要的最少硬币,因为硬币无限,所以可以自底向上计算dp[i]
,对于dp[0~i]
的每个状态,循环coins
数组,寻找可以兑换的组合,用i
面额减去当前硬币价值,dp[i-coin]
在加上一个硬币数就是dp[i]
,最后取最小值就是答案,状态转移方程就是dp[i] = Math.min(dp[i], dp[i - coin] 1)
; - 复杂度分析:时间复杂度是O(sn),s是兑换金额,n是硬币数组长度,一共需要计算s个状态,每个状态需要遍历n个面额来转移状态。空间复杂度是
O(s)
,也就是dp数组的长度
Js:
代码语言:javascript复制var coinChange = function (coins, amount) {
let dp = new Array(amount 1).fill(Infinity);//初始化dp数组
dp[0] = 0;//面额0只需要0个硬币兑换
for (let i = 1; i <= amount; i ) {//循环面额
for (let coin of coins) {//循环硬币数组
if (i - coin >= 0) {//当面额大于硬币价值时
//dp[i - coin]: 当前面额i减当前硬币价值所需要的最少硬币
//dp[i] 可由 dp[i - coin] 1 转换而来
dp[i] = Math.min(dp[i], dp[i - coin] 1);
}
}
}
return dp[amount] === Infinity ? -1 : dp[amount];//如果dp[amount] === Infinity,则无法兑换
};
70. 爬楼梯 (medium)
视频讲解:传送门
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?示例 1:输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。1 阶 1 阶 2 阶示例 2:输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。1 阶 1 阶 1 阶 1 阶 2 阶 2 阶 1 阶提示:1 <= n <= 45
方法1.动态规划
- 思路:因为每次可以爬 1 或 2 个台阶,所以到第n阶台阶可以从第n-2或n-1上来,其实就是斐波那契的dp方程
- 复杂度分析:时间复杂度
O(n)
,空间复杂度O(1)
Js:
代码语言:javascript复制var climbStairs = function (n) {
const memo = [];
memo[1] = 1;
memo[2] = 2;
for (let i = 3; i <= n; i ) {
memo[i] = memo[i - 2] memo[i - 1];//所以到第n阶台阶可以从第n-2或n-1上来
}
return memo[n];
};
//状态压缩
var climbStairs = (n) => {
let prev = 1;
let cur = 1;
for (let i = 2; i < n 1; i ) {
[prev, cur] = [cur, prev cur]
// const temp = cur; // 暂存上一次的cur
// cur = prev cur; // 当前的cur = 上上次cur 上一次cur
// prev = temp; // prev 更新为 上一次的cur
}
return cur;
}
343. 整数拆分 (medium)
视频讲解:传送门
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。返回 你可以获得的最大乘积 。示例 1:输入: n = 2 输出: 1 解释: 2 = 1 1, 1 × 1 = 1。 示例 2:输入: n = 10 输出: 36 解释: 10 = 3 3 4, 3 × 3 × 4 = 36。提示:2 <= n <= 58
- 思路:
dp[i]
为正整数i拆分之后的最大乘积,循环数字n,对每个数字进行拆分,取最大的乘积,状态转移方程:dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j)
,j*(i-j)
表示把i拆分为j
和i-j两个数相乘,j * dp[i-j]
表示把i
拆分成j
和继续把(i-j)
这个数拆分,取(i-j)
拆分结果中的最大乘积与j相乘 - 复杂度:时间复杂度
O(n^2)
,两层循环。空间复杂度O(n)
,dp
数组的空间
js:
代码语言:javascript复制var integerBreak = function (n) {
//dp[i]为正整数i拆分之后的最大乘积
let dp = new Array(n 1).fill(0);
dp[2] = 1;
for (let i = 3; i <= n; i ) {
for (let j = 1; j < i; j ) {
//j*(i-j)表示把i拆分为j和i-j两个数相乘
//j*dp[i-j]表示把i拆分成j和继续把(i-j)这个数拆分,取(i-j)拆分结果中的最大乘积与j相乘
dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j);
}
}
return dp[n];
};
72. 编辑距离 (hard)
视频讲解:传送门
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。你可以对一个单词进行如下三种操作:插入一个字符 删除一个字符 替换一个字符示例 1:输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e') 示例 2:输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')提示:0 <= word1.length, word2.length <= 500 word1 和 word2 由小写英文字母组成
方法1.动态规划
- 思路:
dp[i][j]
表示word1前i个字符和word2前j个字符的最少编辑距离。- 如果
word1[i-1] === word2[j-1]
,说明最后一个字符不用操作,此时dp[i][j] = dp[i-1][j-1]
,即此时的最小操作数和word1和word2都减少一个字符的最小编辑数相同 - 如果
word1[i-1] !== word2[j-1]
,则分为三种情况- word1删除最后一个字符,状态转移成
dp[i-1][j]
,即dp[i][j] = dp[i-1][j] 1
, 1指删除操作 - word1在最后加上一个字符,状态转移成
dp[i][j-1]
,即dp[i][j] = dp[i][j-1] 1
, 1指增加操作 - word1替换最后一个字符,状态转移成
dp[i-1][j-1]
,即dpi = dpi-1 1, 1指替换操作
- word1删除最后一个字符,状态转移成
- 如果
- 复杂度:时间复杂度是
O(mn)
,m是word1的长度,n是word2的长度。空间复杂度是O(mn)
,需要用m * n大小的二维数字存储状态。
Js:
代码语言:javascript复制const minDistance = (word1, word2) => {
let dp = Array.from(Array(word1.length 1), () => Array(word2.length 1).fill(0));
//初始化数组,word1前i个字符最少需要i次操作,比如i次删除变成word2
for (let i = 1; i <= word1.length; i ) {
dp[i][0] = i;
}
//初始化数组,word2前i个字符最少需要i次操作,比如j次插入变成word1
for (let j = 1; j <= word2.length; j ) {
dp[0][j] = j;
}
for (let i = 1; i <= word1.length; i ) {
//循环word1和word2
for (let j = 1; j <= word2.length; j ) {
if (word1[i - 1] === word2[j - 1]) {
//如果word1[i-1] === word2[j-1],说明最后一个字符不用操作。
dp[i][j] = dp[i - 1][j - 1];
} else {
//dp[i-1][j] 1:对应删除
//dp[i][j-1] 1:对应新增
// dp[i-1][j-1] 1:对应替换操作
dp[i][j] = Math.min(dp[i - 1][j] 1, dp[i][j - 1] 1, dp[i - 1][j - 1] 1);
}
}
}
return dp[word1.length][word2.length];
};
63. 不同路径 II(medium)
视频讲解:传送门
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?网格中的障碍物和空位置分别用 1 和 0 来表示。示例 1: 输出:2 解释:3x3 网格的正中间有一个障碍物。 从左上角到右下角一共有 2 条不同的路径:向右 -> 向右 -> 向下 -> 向下 向下 -> 向下 -> 向右 -> 向右示例 2:== obstacleGrid.length n == obstacleGridi.length 1 <= m, n <= 100 obstacleGridi 为 0 或 1
方法1.动态规划
- 思路:和62题一样,区别就是遇到障碍直接返回0
- 复杂度:时间复杂度
O(mn)
,空间复杂度O(mn)
,状态压缩之后是o(n)
Js:
代码语言:javascript复制var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const dp = Array(m)
.fill()
.map((item) => Array(n).fill(0)); //初始dp数组
for (let i = 0; i < m && obstacleGrid[i][0] === 0; i) {
//初始列
dp[i][0] = 1;
}
for (let i = 0; i < n && obstacleGrid[0][i] === 0; i) {
//初始行
dp[0][i] = 1;
}
for (let i = 1; i < m; i) {
for (let j = 1; j < n; j) {
//遇到障碍直接返回0
dp[i][j] = obstacleGrid[i][j] === 1 ? 0 : dp[i - 1][j] dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
};
//状态压缩
var uniquePathsWithObstacles = function (obstacleGrid) {
let m = obstacleGrid.length;
let n = obstacleGrid[0].length;
let dp = Array(n).fill(0); //用0填充,因为现在有障碍物,当前dp数组元素的值还和obstacleGrid[i][j]有关
dp[0] = 1; //第一列 暂时用1填充
for (let i = 0; i < m; i ) {
for (let j = 0; j < n; j ) {
if (obstacleGrid[i][j] == 1) {
//注意条件,遇到障碍物dp[j]就变成0,这里包含了第一列的情况
dp[j] = 0;
} else if (j > 0) {
//只有当j>0 不是第一列了才能取到j - 1
dp[j] = dp[j - 1];
}
}
}
return dp[n - 1];
};
62. 不同路径 (medium)
视频讲解:传送门
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径? = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。向右 -> 向下 -> 向下 向下 -> 向下 -> 向右 向下 -> 向右 -> 向下示例 3:输入:m = 7, n = 3 输出:28 示例 4:输入:m = 3, n = 3 输出:6提示:1 <= m, n <= 100 题目数据保证答案小于等于 2 * 109
方法1.动态规划
动画过大,点击查看
- 思路:由于在每个位置只能向下或者向右, 所以每个坐标的路径和等于上一行相同位置和上一列相同位置不同路径的总和,状态转移方程:
f[i][j] = f[i - 1][j] f[i][j - 1]
; - 复杂度:时间复杂度
O(mn)
。空间复杂度O(mn)
,优化后O(n)
js:
代码语言:javascript复制var uniquePaths = function (m, n) {
const f = new Array(m).fill(0).map(() => new Array(n).fill(0)); //初始dp数组
for (let i = 0; i < m; i ) {
//初始化列
f[i][0] = 1;
}
for (let j = 0; j < n; j ) {
//初始化行
f[0][j] = 1;
}
for (let i = 1; i < m; i ) {
for (let j = 1; j < n; j ) {
f[i][j] = f[i - 1][j] f[i][j - 1];
}
}
return f[m - 1][n - 1];
};
//状态压缩
var uniquePaths = function (m, n) {
let cur = new Array(n).fill(1);
for (let i = 1; i < m; i ) {
for (let r = 1; r < n; r ) {
cur[r] = cur[r - 1] cur[r];
}
}
return cur[n - 1];
};
0-1背包问题
0-1背包问题指的是有n
个物品和容量为j
的背包,weight
数组中记录了n
个物品的重量,位置i
的物品重量是weighti,value
数组中记录了n
个物品的价值,位置i的物品价值是vales[i]
,每个物品只能放一次到背包中,问将那些物品装入背包,使背包的价值最大。
举例:
我们用动态规划的方式来做
- 状态定义:
dp[i][j]
表示从前i个物品里任意取,放进容量为j的背包,价值总和最大是多少 - 状态转移方程:
dp[i][j] = max(dp[i - 1][j]
,dp[i - 1][j - weight[i]] value[i])
; 每个物品有放入背包和不放入背包两种情况
- 当
j - weight[i]<0
:表示装不下i
号元素了,不放入背包,此时dp[i][j] = dp[i - 1][j]
,dpi取决于前i-1
中的物品装入容量为j
的背包中的最大价值 - 当
j - weight[i]>=0
:可以选择放入或者不放入背包。 放入背包则:dp[i][j] = dp[i - 1][j - weight[i]] value[i]
,dp[i - 1][j - weight[i]]
表示i-1
中的物品装入容量为j-weight[i]
的背包中的最大价值,然后在加上放入的物品的价值value[i]
就可以将状态转移到dp[i][j]
。 不放入背包则:dp[i][j] = dp[i - 1] [j]
,在这两种情况中取较大者。
- 初始化dp数组:
dp[i][0]
表示背包的容积为0,则背包的价值一定是0,dp[0][j]
表示第0号物品放入背包之后背包的价值
- 最终需要返回值:就是dp数组的最后一行的最后一列
循环完成之后的dp数组如下图
js:
代码语言:javascript复制function testWeightBagProblem(wight, value, size) {
const len = wight.length,
dp = Array.from({ length: len 1 }).map(//初始化dp数组
() => Array(size 1).fill(0)
);
//注意我们让i从1开始,因为我们有时会用到i - 1,为了防止数组越界
//所以dp数组在初始化的时候,长度是wight.length 1
for (let i = 1; i <= len; i ) {
for (let j = 0; j <= size; j ) {
//因为weight的长度是wight.length 1,并且物品下标从1开始,所以这里i要减1
if (wight[i - 1] <= j) {
dp[i][j] = Math.max(
dp[i - 1][j],
value[i - 1] dp[i - 1][j - wight[i - 1]]
)
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[len][size];
}
function test() {
console.log(testWeightBagProblem([1, 3, 4], [15, 20, 30], 4));
}
test();
状态压缩
根据状态转移方程dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] value[i])
,第i行只与第i-1行状态相关,所以我们可以用滚动数组进行状态压缩,其次我们注意到,j只与j前面的状态相关,所以只用一个数组从后向前计算状态就可以了。
动画过大,点击查看
代码语言:javascript复制function testWeightBagProblem2(wight, value, size) {
const len = wight.length,
dp = Array(size 1).fill(0);
for (let i = 1; i <= len; i ) {
//从后向前计算,如果从前向后的话,最新的值会覆盖老的值,导致计算结果不正确
//dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - wight[i - 1]] value[i - 1])
for (let j = size; j >= wight[i - 1]; j--) {
dp[j] = Math.max(dp[j], dp[j - wight[i - 1]] value[i - 1] );
}
}
return dp[size];
}
416. 分割等和子集 (medium)
视频讲解:传送门
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例 1:输入:nums = 1,5,11,5 输出:true 解释:数组可以分割成 1, 5, 5 和 11 。 示例 2:输入:nums = 1,2,3,5 输出:false 解释:数组不能分割成两个元素和相等的子集。提示:1 <= nums.length <= 200 1 <= numsi <= 100
- 思路:本题可以看成是0-1背包问题,给一个可装载重量为
sum / 2
的背包和 N 个物品,每个物品的重量记录在 nums 数组中,问是否在一种装法,能够恰好将背包装满?dp[i][j]
表示前i个物品是否能装满容积为j的背包,当dp[i][j]
为true时表示恰好可以装满。每个数都有放入背包和不放入两种情况,分析方法和0-1背包问题一样。 - 复杂度:时间复杂度
O(n*sum)
,n是nums数组长度,sum是nums数组元素的和。空间复杂度O(n * sum)
,状态压缩之后是O(sum)
js:
代码语言:javascript复制//可以看成是0-1背包问题,给一个可装载重量为 sum / 2 的背包和 N 个物品,
//每个物品的重量记录在 nums 数组中,问是否在一种装法,能够恰好将背包装满?
var canPartition = function (nums) {
let sum = 0
let n = nums.length
for (let i = 0; i < n; i ) {
sum = nums[i]
}
if (sum % 2 !== 0) {//如果是奇数,那么分割不了,直接返回false
return false
}
sum = sum / 2
//dp[i][j]表示前i个物品是否能装满容积为j的背包,当dp[i][j]为true时表示恰好可以装满
//最后求的是 dp[n][sum] 表示前n个物品能否把容量为sum的背包恰好装满
//dp数组长度是n 1,而且是二维数组,第一维表示物品的索引,第二个维度表示背包大小
let dp = new Array(n 1).fill(0).map(() => new Array(sum 1).fill(false))
//dp数组初始化,dp[..][0] = true表示背包容量为0,这时候就已经装满了,
//dp[0][..] = false 表示没有物品,肯定装不满
for (let i = 0; i <= n; i ) {
dp[i][0] = true
}
for (let i = 1; i <= n; i ) {//i从1开始遍历防止取dp[i - 1][j]的时候数组越界
let num = nums[i - 1]
//j从1开始,j为0的情况已经在dp数组初始化的时候完成了
for (let j = 1; j <= sum; j ) {
if (j - num < 0) {//背包容量不足 不能放入背包
dp[i][j] = dp[i - 1][j];//dp[i][j]取决于前i-1个物品是否能前好装满j的容量
} else {
//dp[i - 1][j]表示不装入第i个物品
//dp[i - 1][j-num]表示装入第i个,此时需要向前看前i - 1是否能装满j-num
//和背包的区别,这里只是返回true和false 表示能否装满,不用计算价值
dp[i][j] = dp[i - 1][j] || dp[i - 1][j - num];
}
}
}
return dp[n][sum]
};
//状态转移方程 F[i, target] = F[i - 1, target] || F[i - 1, target - nums[i]]
//第 n 行的状态只依赖于第 n-1 行的状态
//状态压缩
var canPartition = function (nums) {
let sum = nums.reduce((acc, num) => acc num, 0);
if (sum % 2) {
return false;
}
sum = sum / 2;
const dp = Array.from({ length: sum 1 }).fill(false);
dp[0] = true;
for (let i = 1; i <= nums.length; i ) {
//从后向前计算,如果从前向后的话,最新的值会覆盖老的值,导致计算结果不正确
for (let j = sum; j > 0; j--) {
dp[j] = dp[j] || (j - nums[i] >= 0 && dp[j - nums[i]]);
}
}
return dp[sum];
};
10. 正则表达式匹配(hard)
视频讲解:传送门
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配。'.' 匹配任意单个字符 '*' 匹配零个或多个前面的那一个元素 所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。示例 1:输入:s = "aa", p = "a" 输出:false 解释:"a" 无法匹配 "aa" 整个字符串。 示例 2:输入:s = "aa", p = "a" 输出:true 解释:因为 '' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。 示例 3:输入:s = "ab", p = "." 输出:true 解释:"." 表示可匹配零个或多个('*')任意字符('.')。提示:1 <= s.length <= 20 1 <= p.length <= 30 s 只包含从 a-z 的小写字母。 p 只包含从 a-z 的小写字母,以及字符 . 和 。 保证每次出现字符 时,前面都匹配到有效的字符
方法1.动态规划
- 思路:
dp[i][j]
表示 s 的前 i 个字符能否和p的前j个字符匹配,分为四种情况,看图 - 复杂度:时间复杂度
O(mn)
,m,n分别是字符串s和p的长度,需要嵌套循环s和p。空间复杂度O(mn)
,dp数组所占的空间
js:
代码语言:javascript复制//dp[i][j]表示s的前i个字符能否和p的前j个字符匹配
const isMatch = (s, p) => {
if (s == null || p == null) return false;//极端情况 s和p都是空 返回false
const sLen = s.length, pLen = p.length;
const dp = new Array(sLen 1);//因为位置是从0开始的,第0个位置是空字符串 所以初始化长度是sLen 1
for (let i = 0; i < dp.length; i ) {//初始化dp数组
dp[i] = new Array(pLen 1).fill(false); // 将项默认为false
}
// base case s和p第0个位置是匹配的
dp[0][0] = true;
for (let j = 1; j < pLen 1; j ) {//初始化dp的第一列,此时s的位置是0
//情况1:如果p的第j-1个位置是*,则j的状态等于j-2的状态
//例如:s='' p='a*' 相当于p向前看2个位置如果匹配,则*相当于重复0个字符
if (p[j - 1] == "*") dp[0][j] = dp[0][j - 2];
}
// 迭代
for (let i = 1; i < sLen 1; i ) {
for (let j = 1; j < pLen 1; j ) {
//情况2:如果s和p当前字符是相等的 或者p当前位置是. 则当前的dp[i][j] 可由dp[i - 1][j - 1]转移过来
//当前位置相匹配,则s和p都向前看一位 如果前面所有字符相匹配 则当前位置前面的所有字符也匹配
//例如:s='XXXa' p='XXX.' 或者 s='XXXa' p='XXXa'
if (s[i - 1] == p[j - 1] || p[j - 1] == ".") {
dp[i][j] = dp[i - 1][j - 1];
} else if (p[j - 1] == "*") {//情况3:进入当前字符不匹配的分支 如果当前p是* 则有可能会匹配
//s当前位置和p前一个位置相同 或者p前一个位置等于. 则有三种可能
//其中一种情况能匹配 则当前位置的状态也能匹配
//dp[i][j - 2]:p向前看2个位置,相当于*重复了0次,
//dp[i][j - 1]:p向前看1个位置,相当于*重复了1次
//dp[i - 1][j]:s向前看一个位置,相当于*重复了n次
//例如 s='XXXa' p='XXXa*'
if (s[i - 1] == p[j - 2] || p[j - 2] == ".") {
dp[i][j] = dp[i][j - 2] || dp[i][j - 1] || dp[i - 1][j];
} else {
//情况4:s当前位置和p前2个位置不匹配,则相当于*重复了0次
//例如 s='XXXb' p='XXXa*' 当前位置的状态和p向前看2个位置的状态相同
dp[i][j] = dp[i][j - 2];
}
}
}
}
return dp[sLen][pLen]; // 长为sLen的s串 是否匹配 长为pLen的p串
};
198. 打家劫舍 (medium)
视频讲解:传送门
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。示例 1:输入:1,2,3,1 输出:4 解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 3 = 4 。 示例 2:输入:2,7,9,3,1 输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。 偷窃到的最高金额 = 2 9 1 = 12 。提示:1 <= nums.length <= 100 0 <= numsi <= 400
- 思路:
dp[i]
表示0-i能偷的最大金额,dp[i]
由两种情况中的最大值转移过来dp[i - 2] nums[i]
表示偷当前位置,那么i-1的位置不能偷,而且需要加上dp[i-2]
,也就是前i-2个房间的金钱dp[i - 1]
表示偷当前位置,只偷i-1的房间
- 复杂度:时间复杂度
O(n)
,遍历一次数组,空间复杂度O(1)
,状态压缩之后是O(1)
,没有状态压缩是O(n)
js:
代码语言:javascript复制//dp[i]表示0-i能偷的最大金额
const rob = (nums) => {
const len = nums.length;
const dp = [nums[0], Math.max(nums[0], nums[1])]; //初始化dp数组的前两项
for (let i = 2; i < len; i ) {
//从第三个位置开始遍历
//dp[i - 2] nums[i] 表示偷当前位置,那么i-1的位置不能偷,
//而且需要加上dp[i-2],也就是前i-2个房间的金钱
//dp[i - 1]表示偷当前位置,只偷i-1的房间
dp[i] = Math.max(dp[i - 2] nums[i], dp[i - 1]);
}
return dp[len - 1]; //返回最后最大的项
};
//状态压缩
var rob = function (nums) {
if(nums.length === 1) return nums[0]
let len = nums.length;
let dp_0 = nums[0],
dp_1 = Math.max(nums[0], nums[1]);
let dp_max = dp_1;
for (let i = 2; i < len; i ) {
dp_max = Math.max(
dp_1, //不抢当前家
dp_0 nums[i] //抢当前家
);
dp_0 = dp_1; //滚动交换变量
dp_1 = dp_max;
}
return dp_max;
};