该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
由于收集图像数据的器件或传输数图像的通道的存在一些质量缺陷,文物图像时间久远,或者受一些其他外界因素、动态不稳定抓取图像的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展。这时需要开展图像锐化和边缘检测处理,加强原图像的高频部分,锐化突出图像的边缘细节,改善图像的对比度,使模糊的图像变得更清晰。
图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。通常使用灰度差分法对图像的边缘、轮廓进行处理,将其凸显。本文分别采用Laplacian算子、Robert算子、Prewitt算子和Sobel算子进行图像锐化边缘处理实验。本文主要讲解灰度线性变换,基础性知识希望对您有所帮助。
文章目录
- 一.Roberts算子
- 二.Prewitt算子
- 三.Sobel算子
- 四.Laplacian算子
- 五.总结代码
该系列在github所有源代码:
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/223000.html原文链接:https://javaforall.cn