1、Stereo R-CNN based 3D Object Detection for Autonomous Driving 作者:Peiliang Li, Xiaozhi Chen, Shaojie Shen 论文链接:https://arxiv.org/abs/1902.09738
解读:Stereo 3D Object Detection - 知乎
2、Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 作者:Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, Silvio Savarese 论文链接:https://arxiv.org/abs/1902.09630 论文解读:CVPR2019 | 目标检测新文:Generalized Intersection over Union
3、ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape 作者:Fabian Manhardt, Wadim Kehl, Adrien Gaidon 论文链接:https://arxiv.org/abs/1812.02781 4、Bi-Directional Cascade Network for Perceptual Edge Detection 作者:Jianzhong He, Shiliang Zhang, Ming Yang, Yanhu Shan, Tiejun Huang 论文链接:https://arxiv.org/abs/1902.10903 Github源码:https://github.com/pkuCactus/BDCN 5、RepMet: Representative-based metric learning for classification and one-shot object detection 作者:Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz, Amit Aides, Rogerio Feris, Raja Giryes, Alex M. Bronstein 论文链接:https://arxiv.org/abs/1806.04728
6、Region Proposal by Guided Anchoring 作者:Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Loy, Dahua Lin 论文链接:https://arxiv.org/abs/1901.03278 论文解读:港中大-商汤联合实验室等提出:Guided Anchoring: 物体检测器也能自己学 Anchor
Github链接:GitHub - open-mmlab/mmdetection: OpenMMLab Detection Toolbox and Benchmark
7、Less is More: Learning Highlight Detection from Video Duration 作者:Bo Xiong, Yannis Kalantidis, Deepti Ghadiyaram, Kristen Grauman 论文链接:https://arxiv.org/abs/1903.00859 8、AIRD: Adversarial Learning Framework for Image Repurposing Detection 作者:Ayush Jaiswal, Yue Wu, Wael AbdAlmageed, Iacopo Masi, Premkumar Natarajan 论文链接:https://arxiv.org/abs/1903.00788 9、Feature Selective Anchor-Free Module for Single-Shot Object Detection 作者:Chenchen Zhu, Yihui He, Marios Savvides 论文链接:https://arxiv.org/abs/1903.00621 论文解读:CVPR2019 | CMU提出Single-Shot目标检测最强算法:FSAF 一作直播:CVPR2019 专题直播 | CMU 诸宸辰:基于 Anchor-free 特征选择模块的单阶目标检测
10、Learning Attraction Field Representation for Robust Line Segment Detection 作者:Nan Xue, Song Bai, Fudong Wang, Gui-Song Xia, Tianfu Wu, Liangpei Zhang 论文链接:https://arxiv.org/abs/1812.02122 代码链接:https://github.com/cherubicXN/afm_cvpr2019
11、Latent Space Autoregression for Novelty Detection 作者:Davide Abati, Angelo Porrello, Simone Calderara, Rita Cucchiara 论文链接:https://arxiv.org/abs/1807.01653 代码链接: GitHub - aimagelab/novelty-detection: Latent space autoregression for novelty detection.
12、Strong-Weak Distribution Alignment for Adaptive Object Detection 作者:Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, Kate Saenko 论文链接:https://arxiv.org/abs/1812.04798
13、Few-shot Adaptive Faster R-CNN 作者:Tao Wang, Xiaopeng Zhang, Li Yuan, Jiashi Feng 论文链接:https://arxiv.org/abs/1903.09372 14、Attention Based Glaucoma Detection: A Large-scale Database and CNN Model 作者:Liu Li, Mai Xu, Xiaofei Wang, Lai Jiang, Hanruo Liu 论文链接:https://arxiv.org/abs/1903.10831
15、Bounding Box Regression with Uncertainty for Accurate Object Detection(目标检测边界框回归损失算法) 作者:Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, Xiangyu Zhang 论文链接:https://arxiv.org/abs/1809.08545 代码链接:https://github.com/yihui-he/KL-Loss
解读:CMU和旷视科技开源:KL-Loss目标检测边界框回归新算法(CVPR2019)
16、Precise Detection in Densely Packed Scenes 作者:Eran Goldman , Roei Herzig, Aviv Eisenschtat, Jacob Goldberger, Tal Hassner 论文链接:https://arxiv.org/abs/1904.00853 17、Activity Driven Weakly Supervised Object Detection 作者:Zhenheng Yang, Dhruv Mahajan, Deepti Ghadiyaram, Ram Nevatia, Vignesh Ramanathan 论文链接:https://arxiv.org/pdf/1904.01665.pdf
18、Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction 作者:Jason Ku, Alex D. Pon, Steven L. Waslander 论文链接:https://arxiv.org/pdf/1904.01690.pdf 19、Libra R-CNN: Towards Balanced Learning for Object Detection 作者:Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng, Wanli Ouyang, Dahua Lin 论文链接:https://arxiv.org/abs/1904.02701
解读:浙大和商汤等提出:Libra RCNN目标检测新算法(特征融合),CVPR2019
20、Moving Object Detection under Discontinuous Change in Illumination Using Tensor Low-Rank and Invariant Sparse Decomposition 作者:Moein Shakeri, Hong Zhang 论文链接:https://arxiv.org/abs/1904.03175
21、Towards Universal Object Detection by Domain Attention 作者:Xudong Wang, Zhaowei Cai, Dashan Gao, Nuno Vasconcelos 论文链接:https://arxiv.org/abs/1904.04402 项目链接:Universal Object Detection Benchmark 22、NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection 作者:Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, Quoc V. Le 论文链接:https://arxiv.org/abs/1904.07392 23、Deep Anomaly Detection for Generalized Face Anti-Spoofing 作者:Daniel Pérez-Cabo, David Jiménez-Cabello, Artur Costa-Pazo, Roberto J. López-Sastre 论文链接:https://arxiv.org/abs/1904.08241 24、Cascaded Partial Decoder for Fast and Accurate Salient Object Detection 作者:Zhe Wu, Li Su, Qingming Huang 论文链接:https://arxiv.org/abs/1904.08739
25、A Simple Pooling-Based Design for Real-Time Salient Object Detection 作者:Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi Feng, Jianmin Jiang 论文链接:https://arxiv.org/abs/1904.09569 源码链接:PoolNet : Exploring the Potential of Pooling for Salient Object Detection – 程明明个人主页
26、CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection 作者:Lu Zhang; Huchuan Lu ; Zhe Lin ; Jianming Zhang; You He 论文链接:https://drive.google.com/open?id=1JcZMHBXEX-7AR1P010OXg_wCCC5HukeZ (需要申请) 源码链接:GitHub - zhangludl/code-and-dataset-for-CapSal: This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.
27、Deep Fitting Degree Scoring Network for Monocular 3D Object Detection 作者:Lijie Liu1, Jiwen Lu, Chunjing Xu, Qi Tian, Jie Zhou 论文链接:https://arxiv.org/pdf/1904.12681.pdf 28、A Mutual Learning Method for Salient Object Detection with intertwined Multi-Supervision 作者:Runmin Wu, Mengyang Feng, Wenlong Guan, Dong Wang, Huchuan Lu, Errui Ding 论文链接:待定 源码链接:https://github.com/JosephineRabbit/MLMSNet 29、ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch(Oral) 作者:Rui Zhu, Shifeng Zhang, Xiaobo Wang, Longyin Wen, Hailin Shi, Liefeng Bo, Tao Mei 论文链接:https://arxiv.org/abs/1810.08425v3 源码链接:GitHub - KimSoybean/ScratchDet: The code and models for paper: "ScratchDet: Exploring to Train Single-Shot Object Detectors from Scratch"