摘要 纠错 编辑摘要
二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见伯努利实验定义)
把二项分布公式再推广,就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)
更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布。具体公式在正文中已给出。
多项分布-定义
把 二项分布公式再推广,就得到了多项分布(在一般概率书中很少介绍它,但是 热力学中涉及到它)。 二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见二项分布中伯努利实验定义)
把二项扩展为多项就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:C(n,x)*p6^x*(1-p6)^(n-x)
更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布问题。这时只需用上边公式思想累乘约减就会得到下面图1的概率公式。
某随机实验如果有k个可能结局A1,A2,…,Ak,它们的概率分布分别是p1,p2,…,pk,那么在N次采样的总结果中,A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率P有下面公式:
多项式分布的概率公式
这就是多项分布的概率公式。把它称为多项式分布显然是因为它是一种特殊的多项式展开式的 通项。
我们知道,在代数学里当k个变量的和的N次方的 展开式 (p1 p2 … pk )^N 是一个多项式,其一般项就是前面的公式给出的值。如果这k个变量恰好是可能有的各种结局的出现概率,那么,由于这些概率的合计值对应一个必然事件的概率。而 必然事件的概率等于1,于是上面的多项式就变成了 (p1 p2 … pk )^N =1^N=1, 即此时多项式的值等于1。
因为(p1 p2 … pk )^N的值等于1, 我们也就认为它代表了一个必然事件进行了N 次 抽样的概率(=1,必然事件)。而当把这个多项式可以展开成很多项时,这些项的合计值等于1提示我们这些项是一些互不相容的事件(N次抽样得到的)的对应概率, 即多项式展开式的每一项都是一个特殊的事件的出现概率。于是我们把展开式的通项作为A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率。这样就得到了前面的公式。
如果各个单独事件的出现概率p1,p2,…,pk都相等,即p1=p2=…=pk=p(注意这里是小写的p),注意到p1 p2 … pk =1,就得到p1= p2 =…=pk =p=1/k。把这个值代入多项式的展开式,就使展开式的各个项的合计值满足下式: ∑[ N!/(n1!n2!…nk!)](1/k)^N=1 即 ∑[ N!/(n1!n2!…nk!)]=k^N 以上求和中遍及各个ni的一切可能取的正整数值,但是要求各个ni的合计值等于N。即 n1 n2 …nk=N.
多项分布-应用
用于处理一次实验有多个可能的结果的情况。
在 热力学讨论物质 微观状态的可能个数时,经常用另外的思路引出N!/(n1!n2!…nk!)式。并且称它为 热力学几率。它是一个比天文数字还大很多的数,把它称为几率(概率)并不妥当。但是热力学里由于各个微观状态的出现概率相等,这对应我们在前面讨论的p1= p2 =…=pk =p=1/k,于是 [N!/(n1!n2!…nk!)](1/kN) 就真正具有数学上的概率的含义。换句话说, 物理学里的热力学几率[N!/(n1!n2!…nk!)]乘上(1/kN)以后就是数学中定义的(具有 归一性)的概率了
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/183001.html原文链接:https://javaforall.cn