驱动与应用程序的通信是非常有必要的,内核中执行代码后需要将其动态显示给应用层,但驱动程序与应用层毕竟不在一个地址空间内,为了实现内核与应用层数据交互则必须有通信的方法,微软为我们提供了三种通信方式,如下先来介绍通过ReadFile
系列函数实现的通信模式。
长话短说,不说没用的概念,首先系统中支持
的通信模式
可以总结为三种。
- 缓冲区方式读写(DO_BUFFERED_IO)
- 直接方式读写(DO_DIRECT_IO)
- 其他方式读写
而通过ReadFile,WriteFile
系列函数实现的通信机制则属于缓冲区通信
模式,在该模式下操作系统会将应用层中的数据复制
到内核中,此时应用层调用ReadFile,WriteFile
函数进行读写时,在驱动内会自动触发 IRP_MJ_READ
与 IRP_MJ_WRITE
这两个派遣函数,在派遣函数内则可以对收到的数据进行各类处理。
首先需要实现初始化各类派遣函数这么一个案例,如下代码则是通用的一种初始化派遣函数的基本框架,分别处理了IRP_MJ_CREATE
创建派遣,以及IRP_MJ_CLOSE
关闭的派遣,此外函数DriverDefaultHandle
的作用时初始化其他派遣用的,也就是将除去CREATE/CLOSE
这两个派遣之外,其他的全部赋值成初始值的意思,当然不增加此段代码也是无妨,并不影响代码的实际执行。
#include <ntifs.h>
// 卸载驱动执行
VOID UnDriver(PDRIVER_OBJECT pDriver)
{
PDEVICE_OBJECT pDev; // 用来取得要删除设备对象
UNICODE_STRING SymLinkName; // 局部变量symLinkName
pDev = pDriver->DeviceObject;
IoDeleteDevice(pDev); // 调用IoDeleteDevice用于删除设备
RtlInitUnicodeString(&SymLinkName, L"\??\LySharkDriver"); // 初始化字符串将symLinkName定义成需要删除的符号链接名称
IoDeleteSymbolicLink(&SymLinkName); // 调用IoDeleteSymbolicLink删除符号链接
DbgPrint("驱动卸载完毕...");
}
// 创建设备连接
// LyShark.com
NTSTATUS CreateDriverObject(IN PDRIVER_OBJECT pDriver)
{
NTSTATUS Status;
PDEVICE_OBJECT pDevObj;
UNICODE_STRING DriverName;
UNICODE_STRING SymLinkName;
// 创建设备名称字符串
RtlInitUnicodeString(&DriverName, L"\Device\LySharkDriver");
Status = IoCreateDevice(pDriver, 0, &DriverName, FILE_DEVICE_UNKNOWN, 0, TRUE, &pDevObj);
// 指定通信方式为缓冲区
pDevObj->Flags |= DO_BUFFERED_IO;
// 创建符号链接
RtlInitUnicodeString(&SymLinkName, L"\??\LySharkDriver");
Status = IoCreateSymbolicLink(&SymLinkName, &DriverName);
return STATUS_SUCCESS;
}
// 创建回调函数
NTSTATUS DispatchCreate(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
pIrp->IoStatus.Status = STATUS_SUCCESS; // 返回成功
DbgPrint("派遣函数 IRP_MJ_CREATE 执行 n");
IoCompleteRequest(pIrp, IO_NO_INCREMENT); // 指示完成此IRP
return STATUS_SUCCESS; // 返回成功
}
// 关闭回调函数
NTSTATUS DispatchClose(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
pIrp->IoStatus.Status = STATUS_SUCCESS; // 返回成功
DbgPrint("派遣函数 IRP_MJ_CLOSE 执行 n");
IoCompleteRequest(pIrp, IO_NO_INCREMENT); // 指示完成此IRP
return STATUS_SUCCESS; // 返回成功
}
// 默认派遣函数
NTSTATUS DriverDefaultHandle(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
NTSTATUS status = STATUS_SUCCESS;
pIrp->IoStatus.Status = status;
pIrp->IoStatus.Information = 0;
IoCompleteRequest(pIrp, IO_NO_INCREMENT);
return status;
}
// 入口函数
// By: LyShark
NTSTATUS DriverEntry(PDRIVER_OBJECT pDriver, PUNICODE_STRING RegistryPath)
{
DbgPrint("hello lyshark n");
// 调用创建设备
CreateDriverObject(pDriver);
pDriver->DriverUnload = UnDriver; // 卸载函数
pDriver->MajorFunction[IRP_MJ_CREATE] = DispatchCreate; // 创建派遣函数
pDriver->MajorFunction[IRP_MJ_CLOSE] = DispatchClose; // 关闭派遣函数
// 初始化其他派遣
for (ULONG i = 0; i < IRP_MJ_MAXIMUM_FUNCTION; i )
{
DbgPrint("初始化派遣: %d n", i);
pDriver->MajorFunction[i] = DriverDefaultHandle;
}
DbgPrint("驱动加载完成...");
return STATUS_SUCCESS;
}
代码运行效果如下:
通用框架有了,接下来就是让该驱动支持使用ReadWrite
的方式实现通信,首先我们需要在DriverEntry
处增加两个派遣处理函数的初始化。
// 入口函数
// By: LyShark
NTSTATUS DriverEntry(PDRIVER_OBJECT pDriver, PUNICODE_STRING RegistryPath)
{
DbgPrint("hello lyshark n");
// 调用创建设备
CreateDriverObject(pDriver);
// 初始化其他派遣
for (ULONG i = 0; i < IRP_MJ_MAXIMUM_FUNCTION; i )
{
DbgPrint("初始化派遣: %d n", i);
pDriver->MajorFunction[i] = DriverDefaultHandle;
}
pDriver->DriverUnload = UnDriver; // 卸载函数
pDriver->MajorFunction[IRP_MJ_CREATE] = DispatchCreate; // 创建派遣函数
pDriver->MajorFunction[IRP_MJ_CLOSE] = DispatchClose; // 关闭派遣函数
// 增加派遣处理
pDriver->MajorFunction[IRP_MJ_READ] = DispatchRead; // 读取派遣函数
pDriver->MajorFunction[IRP_MJ_WRITE] = DispatchWrite; // 写入派遣函数
DbgPrint("驱动加载完成...");
return STATUS_SUCCESS;
}
接着,我们需要分别实现这两个派遣处理函数,如下DispatchRead
负责读取时触发,与之对应DispatchWrite
负责写入触发。
- 引言:
- 对于读取请求
I/O管理器
分配一个与用户模式的缓冲区大小相同的系统缓冲区SystemBuffer
,当完成请求时I/O管理器将驱动程序已经提供的数据从系统缓冲区复制到用户缓冲区。 - 对于写入请求,会分配一个系统缓冲区并将
SystemBuffer
设置为地址,用户缓冲区的内容会被复制到系统缓冲区,但是不设置UserBuffer
缓冲。
通过IoGetCurrentIrpStackLocation(pIrp)
接收读写请求长度,偏移等基本参数,AssociatedIrp.SystemBuffer
则是读写缓冲区,IoStatus.Information
是输出缓冲字节数,Parameters.Read.Length
是读取写入的字节数。
// 读取回调函数
NTSTATUS DispatchRead(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
NTSTATUS Status = STATUS_SUCCESS;
PIO_STACK_LOCATION Stack = IoGetCurrentIrpStackLocation(pIrp);
ULONG ulReadLength = Stack->Parameters.Read.Length;
char szBuf[128] = "hello lyshark";
pIrp->IoStatus.Status = Status;
pIrp->IoStatus.Information = ulReadLength;
DbgPrint("读取长度:%d n", ulReadLength);
// 取出字符串前5个字节返回给R3层
memcpy(pIrp->AssociatedIrp.SystemBuffer, szBuf, ulReadLength);
IoCompleteRequest(pIrp, IO_NO_INCREMENT);
return Status;
}
// 接收传入回调函数
// By: LyShark
NTSTATUS DispatchWrite(struct _DEVICE_OBJECT *DeviceObject, struct _IRP *Irp)
{
NTSTATUS Status = STATUS_SUCCESS;
PIO_STACK_LOCATION Stack = IoGetCurrentIrpStackLocation(Irp);
ULONG ulWriteLength = Stack->Parameters.Write.Length;
PVOID ulWriteData = Irp->AssociatedIrp.SystemBuffer;
// 输出传入字符串
DbgPrint("传入长度: %d 传入数据: %s n", ulWriteLength, ulWriteData);
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return Status;
}
如上部分都是在讲解驱动层面的读写派遣,应用层还没有介绍,在应用层我们只需要调用ReadFile
函数当调用该函数时驱动中会使用DispatchRead
派遣例程来处理这个请求,同理调用WriteFile
函数则触发的是DispatchWrite
派遣例程。
我们首先从内核中读出前五个字节并放入缓冲区内,输出该缓冲区内的数据,然后在调用写入,将hello lyshark
写回到内核里里面,这段代码可以这样来写。
#include <iostream>
#include <Windows.h>
#include <winioctl.h>
int main(int argc, char *argv[])
{
HANDLE hDevice = CreateFileA("\\.\LySharkDriver", GENERIC_READ | GENERIC_WRITE, 0,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hDevice == INVALID_HANDLE_VALUE)
{
CloseHandle(hDevice);
return 0;
}
// 从内核读取数据到本地
char buffer[128] = { 0 };
ULONG length;
// 读入到buffer长度为5
// By:lyshark.com
ReadFile(hDevice, buffer, 5, &length, 0);
for (int i = 0; i < (int)length; i )
{
printf("读取字节: %c", buffer[i]);
}
// 写入数据到内核
char write_buffer[128] = "hello lyshark";
ULONG write_length;
WriteFile(hDevice, write_buffer, strlen(write_buffer), &write_length, 0);
system("pause");
CloseHandle(hDevice);
return 0;
}
使用驱动工具安装我们的驱动,然后运行该应用层程序,实现通信,效果如下所示: