一个简单的数学问题

2022-11-21 15:49:24 浏览数 (3)

A Simple Math Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 729    Accepted Submission(s): 177 Problem Description Given two positive integers a and b,find suitable X and Y to meet the conditions: X Y=a Least Common Multiple (X, Y) =b Input Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*10^4),b(1≤b≤10^9),and their meanings are shown in the description.Contains most of the 12W test cases. Output For each set of input data,output a line of two integers,representing X, Y.If you cannot find such X and Y,output one line of "No Solution"(without quotation). Sample Input 6 8 798 10780 Sample Output No Solution 308 490

 题意:

代码语言:javascript复制
给定两个正整数a和b,找到合适的X和Y来满足条件   (1)X   Y =a  
                                           (2)(X,Y)的最小公倍数= b

                 即

                                                  x y=a

                                                 x*y/gcd(x,y)=b

                                            令gcd(x,y)=tem

                                                   x=i*c,y=j*c

                                                  i*c j*c=a

                                                 c*i*j=b

                                                  tem*(i j)=a

                                                   tem*i*j=b

因为i j互质 所以gcd(a,b)=c=gcd(x,y) 【最重要的条件】

所以一开始就能得到c值,剩下就是求根

//思路:解一个二元一次方程 求出方程根              //令A=a/tem;             //令B=b/tem;             //A=a/tem;             //B=b/tem;             //k1 k2=A;             //k1*k2=B;             //k1(A-k1)=B;             // k1^2-Ak1 B=0;             // A^A-4*B>0

代码语言:javascript复制
#include<stdio.h>
#include<string.h>
#include<math.h>
#define M 100003
int gcd(int a,int b){if(b==0) return a;else return gcd(b,a%b);}
int main(){
	long int a,b,x,y,x2,y2,tem,k1,k2,A,B,q;
	while(scanf("%ld%ld",&a,&b)!=EOF){
		     tem=gcd(a,b);
		     A=a/tem;
		     B=b/tem;
		    q=A*A-4*B;
		 	if(q<0) printf("No Solutionn");
		 	else
		 	{ long int  t1=sqrt(q);
		 	   if(t1*t1!=q)printf("No Solutionn");
		 	   else{
		 	   	   x=(A-t1)*tem;
		 	   	   y=(A t1)*tem;
		 	   	   printf("%ld %ldn",x/2,y/2);
		 	   }
		 		
		 	}
		 }
	return 0;
} 

0 人点赞