dfrac{arctan x}{ln left( 1 x right)}le dfrac{sqrt{2} 1}{2}
.
解:用中值定理做的话比较简单,
Gleft( x right) =arctan x
,
gleft( x right) =ln left( 1 x right)
,注意
Gleft( 0 right) =0
,
gleft( 0 right) =0
,由柯西中值定理,存在
xi in left( 0,x right)
内,使得
dfrac{arctan x}{ln left( 1 x right)}=dfrac{Gleft( x right) -Gleft( 0 right)}{gleft( x right) -gleft( 0 right)}=dfrac{G^{'}left( xi right)}{g^{'}left( xi right)}=dfrac{1 xi}{1 xi ^2}
,令
varphi left( x right) =dfrac{1 x}{1 x^2}
,
varphi ^{'}left( x right) =dfrac{1-2x-x^2}{left( 1 x^2 right) ^2}=0
,得
x=sqrt{2}-1
,当
xin left( 0,sqrt{2}-1 right)
,
varphi ^{'}left( x right) > 0
,反之在
xin left( sqrt{2}-1, infty right)
,
varphi ^{'}left( x right) < 0
。故
varphi left( x right) _{max}=varphi left( sqrt{2}-1 right) =dfrac{sqrt{2} 1}{2}