数据结构基础详解:哈希表【C语言代码实践篇】开放地址法__拉链法_哈希表的创建_增删查操作详解

2024-10-09 23:41:42 浏览数 (1)

1.哈希表代码实现之开放地址法

1.1 开放地址法创建哈希表

哈希表本质就是一个线性表,定义一个哈希表结构体,包括一个动态数组PList,表长,和关键字个数(元素个数)

代码实现的一些细节

1.没有关键字的地方,默认初始值要设置成99999(就是无穷大),因为动态设置一个数组是随机值,会影响到代码结果

代码语言:c复制
//开放地址法哈希表的创建
# define INF 999999999;
typedef int ElemType;

typedef struct HashTable
{
    int kNum;
    ElemType *pList;
    int tLength;
}HashTable;

void initial(HashTable &HT,int tlength)
{
    HT.pList=(ElemType *)malloc(sizeof(HashTable)*tlength);
    HT.tLength=tlength;
    for(int i=0;i<tlength;i  )
    {
        HT.pList[i]=INF;
    }
    HT.kNum=0;
}

HashTable creatHT(ElemType tlength)
{
    HashTable HT;
    initial(HT,tlength);
    return HT;
}

1.2 开放地址法之查找

构建一个如上图所示的哈希表作为样例:

代码语言:c复制
int main()
{
    HashTable HT=creatHT(10);
    getDi(HT.tLength);
    HT.pList[6]=6;
    HT.pList[7]=13;
    HT.pList[8]=27;
    HT.pList[9]=41;
    HT.pList[0]=55;
    HT.tLength=10;
    
    int ret=search(54, HT);
    printf("%dn",ret);
}

具体查找代码的实现:

代码语言:c复制
#define P 7
int Hash(ElemType key)  //除留余数法哈希函数
{
    return key%P;
}

int Di[100]={0};
void getDi(int tLength) //初始化一个线性探测序列,0,1,2,3,4,5,6,.....
{
    for(int i=1;i<=tLength-1;i  ) //为什么是tLength-1,因为假如表长为10,地址空间是0-9
    {
        Di[i]=i;
    }
}

int isUpperBound(int di,int tLength) //判断边界是否超过,意味着若超出边界,则哈希表中没有该元素
{
    if(di>tLength-1) //是否超出查找范围
    {
        return 0;  //超出查找范围
    }
    return 1;
}

int search(ElemType key,HashTable HT)  //给出要查的关键字和哈希表,进行查找
{
    //初始化查找
    int i=0;
    int Hi=(Di[i] Hash(key))%HT.tLength;   //线性探测法函数的构建,除的是表长
    
    //如果没有超出界限,并且没有查到空白的元素,就一直找到超出界限为止
    while (isUpperBound(Di[i], HT.tLength)&&HT.pList[Hi]!=INF){
        if(HT.pList[Hi]==key)return 1;  //找到了
        
        i  ;
        Hi=(Di[i] Hash(key))%HT.tLength;
    }
    return 0

1.3 开放地址法之插入

开放地址的插入其实就是在查找操作上进行了改进,在查找中,多引入一个pos指针,pos指针返回待插入位置或是当前哈希表已经满了,pos就返回最后一个元素地址。

查找操作的修改代码:

代码语言:c复制
int search(ElemType key,HashTable HT,int &pos)  //给出要查的关键字和哈希表,进行查找
{
    //初始化查找
    int i=0;
    int Hi=(Di[i] Hash(key))%HT.tLength;   //线性探测法函数的构建,除的是表长
    
    //如果没有超出界限,并且没有查到空白的元素,就一直找到超出界限为止
    while (isUpperBound(Di[i], HT.tLength)&&HT.pList[Hi]!=INF){
        if(HT.pList[Hi]==key)return 1;  //找到了
        
        i  ;
        Hi=(Di[i] Hash(key))%HT.tLength;
    }
    pos=Hi;  //这个位置可能是空白的存储单元,也可能是最后一个访问的关键字位置
    return 0;
}

插入代码的实现:

代码语言:cpp复制
int insrt(ElemType key,HashTable &HT)
{
    int pos=-1;
    int ret=search(key, HT, pos); //拿到pos
    if(ret==0&&HT.pList[pos]==INF) //ret==0意味着,我们要插入的元素,原哈希表中并不存在
    {
        HT.pList[pos]=key;
        HT.kNum  ;
        return 1;  //插入成功
    }
    return 0;  //插入失败
}

测试代码:

代码语言:cpp复制
int main()
{
    HashTable HT=creatHT(10);
    getDi(HT.tLength);
    HT.pList[6]=6; HT.pList[7]=13;HT.pList[8]=27;
    HT.pList[9]=41;HT.pList[0]=55;
    HT.tLength=10;
    
    int ret=insrt(57, HT);
    for (int i=0; i<HT.tLength; i  ) {
        printf("%dn",HT.pList[i]);
    }
}

1.4 开放地址法之删除

删除操作,本质上也是在查找操作的基础上修改

找到要删除元素的位置,将那个位置的值设置为无穷大,并统计表中元素-1

修改后的查找函数:

代码语言:cpp复制
int delete_serch(ElemType key,HashTable HT,int &pos)
{
    //初始化查找
    int i=0;
    int Hi=(Di[i] Hash(key))%HT.tLength;   //线性探测法函数的构建,除的是表长
    
    //如果没有超出界限,并且没有查到空白的元素,就一直找到超出界限为止
    while (isUpperBound(Di[i], HT.tLength)&&HT.pList[Hi]!=INF){
        if(HT.pList[Hi]==key)
        {
            pos=Hi;
            return 1;  //找到了
        }
        i  ;
        Hi=(Di[i] Hash(key))%HT.tLength;
    }
    return 0;
}

删除操作:

代码语言:cpp复制
int detele_hash(ElemType key,HashTable &HT)
{
    int pos=-1;
    if(delete_serch(key, HT, pos)==1)
    {
        HT.pList[pos]=INF;
    }
    return 0;
}

2.哈希表代码实现之链地址法(拉链法)

把这个拉链法,分成两部分,右边,就看成多条链表。

左边存储的是指针,是指针数组,也就是存储的它挂着的那些链的第一个结点

pList是指向指针数组的指针,是指针的指针

2.1 链地址法之创建哈希表

代码语言:cpp复制
typedef struct Node
{
    ElemType key;
    struct Node * next;
    
}Node;


typedef struct ChHashTable
{
    Node **pList;  //指向指针数组的指针
    int tlength;  //哈希表长度
    int kNum;  //关键字的个数
}ChHashTable;


void initial(ChHashTable &CHT,int tLength)
{
    CHT.pList=(struct Node**)malloc(sizeof(struct node *)*tLength); //分配动态数组
    CHT.tlength=tLength;
    for(int i=0;i<tLength;i  )
    {
        CHT.pList[i]=NULL;
    }
    CHT.kNum=0;
}
ChHashTable creat(int tLength)
{
    ChHashTable CHT;
    initial(CHT, tLength);
    return CHT;
}

2.2 链地址法之查找

链地址法的查找和插入基本上一样,这里省略,插入不省略

2.3 链地址法之插入

插入代码如下:

代码语言:cpp复制
//链地址的插入其实就是单链表的插入,这里用尾插法进行链地址哈希表的插入
void insrt(ElemType key,ChHashTable &CHT)
{
    int i=Hash(key);  //找到待插入的数组下标
    
    Node *pCur=CHT.pList[i]; //获取当前数组下标的第一个元素,可能空的,也可能非空,就是存储的是第一个链表的地址
    Node * preNode=NULL;
    
    if(pCur==NULL)   //如果它是空的
    {
        struct Node * pNode=(Node *)malloc(sizeof(Node));
        pNode->key=key;
        pNode->next=NULL;
        CHT.pList[i]=pNode;
    }else
    {
        //如果它非空,就不断的查找,如果查到了就不插入,查不到就用尾插法插入
        while(pCur!=NULL)
        {
            if(pCur->key==key) break;  //不插入了
            
            preNode=pCur;
            pCur=pCur->next;
            
            if(pCur==NULL)  //没有找到待插入的元素,用尾插法插入
            {
                struct Node * pNode=(Node *)malloc(sizeof(Node));
                pNode->key=key;
                pNode->next=NULL;
               
                preNode->next=pNode;
            }
        }
    }
}

测试代码如下:

代码语言:cpp复制
int main()
{
    ChHashTable CHT=creat(10);
    
    ElemType keyList[]={31,23,17,27,19,11,13,91,61,41};
    int keyListLength=10;
    
    for(int i=0;i<keyListLength;i  )
    {
        insrt(keyList[i], CHT);
    }
    
  //  int dd=delt(31, CHT);  删除测试
   // int dd1=delt(11, CHT);
    //int dd2=delt(13, CHT);
    
    for(int i=0;i<CHT.tlength;i  )
    {
        Node *pCur=CHT.pList[i];
        while(pCur!=NULL)
        {
            printf("%d ",pCur->key);
            pCur=pCur->next;
        }
        printf("n");
    }

2.4 链地址法之删除

代码语言:cpp复制
int delt(ElemType key,ChHashTable &CHT)
{
    int i=Hash(key);  //找到待插入的数组下标
    
    Node *pCur=CHT.pList[i]; //获取当前数组下标的第一个元素,可能空的,也可能非空,就是存储的是第一个链表的地址
    Node * preNode=NULL;
    
    //在删除操作中,需要分为两种情况,第一种情况,是第一个结点,要在指针数组上操作,不是第一个结点
    
    if(pCur==NULL)
    {
        return 0;
    }else   //在不为空的情况下,删除
    {
        if(pCur->key==key)
        {
            CHT.pList[i]=pCur->next;
            free(pCur);
            return 1;
        }
        else
        {
            while(pCur!=NULL)  //一直找
            {
                if(pCur->key==key)
                {
                    preNode->next=pCur->next;
                    free(pCur);
                    break;
                }
                preNode=pCur;
                pCur=pCur->next;
            }
        }
    }
    return 0;
}

0 人点赞