一个scrapy框架的爬虫(爬取京东图书)

2018-03-05 14:13:40 浏览数 (1)

我们的这个爬虫设计来爬取京东图书(jd.com)。

scrapy框架相信大家比较了解了。里面有很多复杂的机制,超出本文的范围。

1、爬虫spider

tips:

1、xpath的语法比较坑,但是你可以在chrome上装一个xpath helper,轻松帮你搞定xpath正则表达式

2、动态内容,比如价格等是不能爬取到的

3、如本代码中,评论爬取部分代码涉及xpath对象的链式调用,可以参考

代码语言:javascript复制
# -*- coding: utf-8 -*-

# import scrapy # 可以用这句代替下面三句,但不推荐
from scrapy.spiders import Spider
from scrapy.selector import Selector
from scrapy import Request
from scrapy.linkextractors.lxmlhtml import LxmlLinkExtractor

from jdbook.items import JDBookItem  # 如果报错是pyCharm对目录理解错误的原因,不影响


class JDBookSpider(Spider):
    name = "jdbook"
    allowed_domains = ["jd.com"]  # 允许爬取的域名,非此域名的网页不会爬取
    start_urls = [
        # 起始url,这里设置为从最大tid开始,向0的方向迭代
        "http://item.jd.com/11678007.html"
    ]

    # 用来保持登录状态,可把chrome上拷贝下来的字符串形式cookie转化成字典形式,粘贴到此处
    cookies = {}

    # 发送给服务器的http头信息,有的网站需要伪装出浏览器头进行爬取,有的则不需要
    headers = {
        # 'Connection': 'keep - alive',
        'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.82 Safari/537.36'
    }

    # 对请求的返回进行处理的配置
    meta = {
        'dont_redirect': True,  # 禁止网页重定向
        'handle_httpstatus_list': [301, 302]  # 对哪些异常返回进行处理
    }

    def get_next_url(self, old_url):
        '''
        description: 返回下次迭代的url
        :param oldUrl: 上一个爬去过的url
        :return: 下次要爬取的url
        '''
        # 传入的url格式:http://www.heartsong.top/forum.php?mod=viewthread&tid=34
        list = old_url.split('/')  #用等号分割字符串
        old_item_id = int(list[3].split('.')[0])
        new_item_id = old_item_id - 1
        if new_item_id == 0:  # 如果tid迭代到0了,说明网站爬完,爬虫可以结束了
            return
        new_url = '/'.join([list[0], list[1], list[2], str(new_item_id)  '.html'])  # 构造出新的url
        return str(new_url)  # 返回新的url

    def start_requests(self):
        """
        这是一个重载函数,它的作用是发出第一个Request请求
        :return:
        """
        # 带着headers、cookies去请求self.start_urls[0],返回的response会被送到
        # 回调函数parse中
        yield Request(self.start_urls[0], callback=self.parse, headers=self.headers, cookies=self.cookies, meta=self.meta)

    def parse(self, response):
        """
        用以处理主题贴的首页
        :param response:
        :return:
        """
        selector = Selector(response)
        item = JDBookItem()
        extractor = LxmlLinkExtractor(allow=r'http://item.jd.com/d.*html')
        link = extractor.extract_links(response)
        try:
            item['_id'] =  response.url.split('/')[3].split('.')[0]
            item['url'] = response.url
            item['title'] = selector.xpath('/html/head/title/text()').extract()[0]
            item['keywords'] = selector.xpath('/html/head/meta[2]/@content').extract()[0]
            item['description'] = selector.xpath('/html/head/meta[3]/@content').extract()[0]
            item['img'] = 'http:'   selector.xpath('//*[@id="spec-n1"]/img/@src').extract()[0]
            item['channel'] = selector.xpath('//*[@id="root-nav"]/div/div/strong/a/text()').extract()[0]
            item['tag'] = selector.xpath('//*[@id="root-nav"]/div/div/span[1]/a[1]/text()').extract()[0]
            item['sub_tag'] = selector.xpath('//*[@id="root-nav"]/div/div/span[1]/a[2]/text()').extract()[0]
            item['value'] = selector.xpath('//*[@id="root-nav"]/div/div/span[1]/a[2]/text()').extract()[0]
            comments = list()
            node_comments = selector.xpath('//*[@id="hidcomment"]/div')
            for node_comment in node_comments:
                comment = dict()
                node_comment_attrs = node_comment.xpath('.//div[contains(@class, "i-item")]')
                for attr in node_comment_attrs:
                    url = attr.xpath('.//div/strong/a/@href').extract()[0]
                    comment['url'] = 'http:'   url
                    content = attr.xpath('.//div/strong/a/text()').extract()[0]
                    comment['content'] = content
                    time = attr.xpath('.//div/span[2]/text()').extract()[0]
                    comment['time'] = time
                comments.append(comment)
            item['comments'] = comments
        except Exception, ex:
            print 'something wrong', str(ex)
        print 'success, go for next'
        yield item

        next_url = self.get_next_url(response.url)  # response.url就是原请求的url
        if next_url != None:  # 如果返回了新的url
            yield Request(next_url, callback=self.parse, headers=self.headers, cookies=self.cookies, meta=self.meta)

2、存储管道:pipelines

tips:

1、本pipelines将爬取的数据存入mongo,比写本地文件靠谱,特别是多实例或者分布式情况。

代码语言:javascript复制
# -*- coding: utf-8 -*-

import pymongo
from datetime import datetime
from scrapy.exceptions import DropItem


class JDBookPipeline(object):
    def __init__(self, mongo_uri, mongo_db, mongo_coll):
        self.ids = set()
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db
        self.mongo_coll = mongo_coll

    @classmethod
    def from_crawler(cls, crawler):
        return cls(
            mongo_uri=crawler.settings.get('MONGO_URI'),
            mongo_db=crawler.settings.get('MONGO_DB'),
            mongo_coll=crawler.settings.get('MONGO_COLL')
        )

    def open_spider(self, spider):
        self.client = pymongo.MongoClient(self.mongo_uri)
        # 数据库登录需要帐号密码的话
        # self.client.admin.authenticate(settings['MINGO_USER'], settings['MONGO_PSW'])
        self.db = self.client[self.mongo_db]
        self.coll = self.db[self.mongo_coll]

    def close_spider(self, spider):
        self.client.close()

    def process_item(self, item, spider):
        if item['_id'] in self.ids:
            raise DropItem("Duplicate item found: %s" % item)
        if item['channel'] != u'图书':
            raise Exception('not book')
        else:
            #self.coll.insert(dict(item))
            # 如果你不想锁死collection名称的话
            self.ids.add(item['_id'])
            collection_name = item.__class__.__name__   '_'   str(datetime.now().date()).replace('-', '')
            self.db[collection_name].insert(dict(item))
            return item

3、数据结构:items

tips:

1、看到scrapy的item就笑了,这不是django么

代码语言:javascript复制
# -*- coding: utf-8 -*-

import scrapy


class JDBookItem(scrapy.Item):
    _id = scrapy.Field()
    title = scrapy.Field()
    url = scrapy.Field()
    keywords = scrapy.Field()
    description = scrapy.Field()
    img = scrapy.Field()
    channel = scrapy.Field()
    tag = scrapy.Field()
    sub_tag = scrapy.Field()
    value = scrapy.Field()
    comments = scrapy.Field()

4、scrapyd部署

很多朋友想做分布式爬虫,比如通过celery任务调起scarpy爬虫任务。

但是很不幸,scrapy想实现这样的方式并不简单。一个比较好的办法是用scrapyd管理爬虫任务。

你需要保证你的python环境安装了3个东西。

代码语言:javascript复制
source kangaroo.env/bin/activate
pip install scrapy scrapyd scrapyd-client

在你的spider路径下启动scrapyd守护进程。

代码语言:javascript复制
scrapyd

下面注册你的spider,先写配置文件scrapy.cfg 

代码语言:javascript复制
# Automatically created by: scrapy startproject
#
# For more information about the [deploy] section see:
# https://scrapyd.readthedocs.org/en/latest/deploy.html


[settings]
default = jdbook.settings


[deploy:jdbook]
url = http://localhost:6800/
project = jdbook

开始注册

代码语言:javascript复制
#注册spider
scrapyd-deploy -p jdbook -d jdbook
#列出已注册的spider
scrapyd-deploy -l
输出:jdbook               http://localhost:6800/

这样就已经注册好了

开始/停止爬虫:

代码语言:javascript复制
curl -XPOST http://10.94.99.55:6800/schedule.json? -d project=jdbook -d spider=jdbook
输出:{"status": "ok", "jobid": "9d50b3dcabfc11e69aa3525400128d39", "node_name": "kvm33093.sg"}

 至此,你可以在celery任务中调用爬虫了,只需要发送如上url就可以。

而各个爬虫可以存放在不同的机器上,实现分布式爬取。

0 人点赞