记一次grpc server内存/吞吐量优化

2022-11-29 17:20:38 浏览数 (1)

背景

最近,上线的采集器忽然时有OOM。采集器本质上是一个grpc服务,网络设备通过grpc协议将数据上报后,采集器进行格式等整理后,发往下一个系统(比如分析,存储)。

打开运行环境,发现特性如下:

  1. 每个采集器实例,会有数千个设备相连。并且会建立一个双向 grpc stream,用以上报数据。
  2. cpu的负载并不高,但内存居高不下。 初步猜想,内存和stream的数量相关,下面来验证一下。

优化内存

这次,很有先见之明的在上线就部署了pprof。这成为了线上debug的关键所在。

代码语言:javascript复制
import _ "net/http/pprof" 
go func() { 
    logrus.Errorln(http.ListenAndServe(":6060", nil)) 
}() 

先看协程

一般内存问题会和协程泄露有关,所以先抓一下协程:

代码语言:javascript复制
go tool pprof http://localhost:6060/debug/pprof/goroutine 

得到了抓包的文件/root/pprof/pprof.grpc_proxy.goroutine.001.pb.gz,为了方便看,scp到本机。 在本地执行:

代码语言:javascript复制
go tool pprof -http=0.0.0.0: ./pprof.grpc_proxy.goroutine.001.pb.gz 

如果报错没有graphviz,安装之:

代码语言:javascript复制
yum install graphviz 

此时进入浏览器输入http://127.0.0.1:8080/ui/,会有一个很好看的页面。

在这里,会发现有13W个协程。有点多,但考虑到连接了10000多个设备。

  1. 这些协程,有keepalive, 有收发包等协程。都挺正常,其实问题不大。
  2. 几乎所有的协程都gopark了。在等待。这也解释了为什么cpu其实不高,因为设备连上了但是不上报数据。占着资源不XX。

再看内存

协程虽然多,但没看出什么有价值的东西。那么再看看内存的占用。这次换个命令:

代码语言:javascript复制
go tool pprof -inuse_space  http://127.0.0.1:6060/debug/pprof/heap 

-inuse_space 代表观察使用中的内存 继续得到数据文件,然后scp到本机执行:

代码语言:javascript复制
go tool pprof -http=0.0.0.0: ./pprof.grpc_proxy.alloc_objects.alloc_space.inuse_objects.inuse_space.003.pb.gz 

发现grpc.Serve.func3 ->...-> newBufWriter占用了大量内存。 问题很明显,是buf的配置不太合适。

这里多提一句,grpc服务端内存暴涨一般有这几个原因:

  1. 没有设置keepalive,使得连接泄露
  2. 服务端处理能力不足,流程阻塞,这个一般是下一跳IO引起。
  3. buffer使用了默认配置。ReadBufferSizeWriteBufferSize默认为每个stream配置了32KB的大小。如果连接了很多设备,但其实cpu开销并不大,可以考虑减少这个值。

修改后代码添加grpc.ReadBufferSize(1024*8)/grpc.WriteBufferSize(1024*8)配置

代码语言:javascript复制
 var keepAliveArgs = keepalive.ServerParameters{ 
 Time: 10 * time.Second, 
 Timeout: 15 * time.Second, 
 MaxConnectionIdle: 3 * time.Minute, 
 } 
            s := grpc.NewServer( 
 ....... 
                grpc.KeepaliveParams(keepAliveArgs), 
                grpc.MaxSendMsgSize(1024*1024*8), // 最大消息8M 
                grpc.MaxRecvMsgSize(1024*1024*8), 
                grpc.ReadBufferSize(1024*8), // 就是这两个参数 
                grpc.WriteBufferSize(1024*8), 
 ) 
 if err := s.Serve(lis); err != nil { 
                logger.Errorf("failed to serve: %v", err) 
 return 
 } 

重新发布程序,发现内存占用变成了原来的一半。内存占用大的问题基本解决。

注意:减少buffer代表存取数据的频次会增加。理论上会带来更大的cpu开销。这也符合优化之道在于,CPU占用大就(增加buffer)用内存换,内存占用大就(减少buffer)用cpu换。水多了加面,面多了加水。如果cpu和内存都占用大,那就到了买新机器的时候了。

优化吞吐

在优化内存的时候,顺便看了一眼之前不怎么关注的缓冲队列监控。惊掉下巴。居然有1/4的数据使用到了缓冲队列来发送。这势必大量的使用了低速的磁盘。

这里简单提一下架构。

  1. 服务在收到数据之后并处理后,有多个下一跳(ai分析,存储等微服务)等着发送数据。
  2. 服务使用roundrobin的方式进行下一跳的选取
  3. 当下一跳繁忙的时候,则将数据写入到buffer中,buffer是一个磁盘队列。并且有另一个线程负责消费buffer中的数据。

简单用代码来表示就是:

代码语言:javascript复制
func SendData(data *Data){ 
    i =1 
    targetStream:= streams[i%len(streams)] 
 select{ 
 case targetStream.c<- data: 
 //写入成功 
 case <-time.After(time.Millisecond*50): 
            bufferStream.c<-data // 超时,写入失败,写到磁盘缓存队列中,等待容错程序处理 
 } 
} 

这种比较通用的玩法有几个硬伤

  1. 当某个下一跳stream的延时比较高的时候,就会引发大量的阻塞。从而使得大量的数据用到缓存。
  2. time.After里的超时时间设成什么,很让人头痛。如果设得太大,虽然减少了缓冲的使用率,但增加了数据的延时。

思考了一下,能不能利用go的机制,从之前的轮循发送,换成哪个stream快就往谁发。

于是,我把代码写成了这样,调用Send的时候,将数据发到baseCh,同时,将baseCh让后台所有的stream同时读取数据,这样哪个stream空闲都会立刻从baseCh取数据发往下一跳:

代码语言:javascript复制
// 引入baseCh,所有的数据先发到这 
baseCh:= make(chan *Data) 
// 为每个下一跳的stream建立一个协程,用来发送数据 
for _,stream := range streams{ 
    stream:=stream 
 // 在stream实现中使用一个独立的协程管理本stream的发送,所有的stream都共用这一个入口 
 // 同时从这一个入口ch取数据 
    stream.SendCh = bashCh 
} 
func Send(data *Data){ 
 select{ 
 case bashCh<-data: 
 case <-time.After(time.Millisecond*50): 
            buffer.Send(data) 
 } 
} 

同时,stream的实现如下:

代码语言:javascript复制
func (s *MyStream) newGrpcStream(methodName string, addr string) error { 
 // 创建客户端,把本地消息发到后端上 
 // ...... 
    stream, err := grpc.NewClientStream(s.ctx, 
        clientStreamDescForProxying, 
        conn, methodName) 
 if err != nil { 
        logrus.Errorf("create stream addr:%v failed, %v", addr, err) 
 return err 
 } 
 // ...... 
    go func() { 
 // 后端唯一的closeSend,都收到这里 
        defer stream.CloseSend() 
 for { 
 select { 
 // 关键所在,所有的stream共用同一个SendCh,这就是上一级的baseCh 
 case msg := <-s.SendCh: 
                f := msg.Msg 
 // 源源不断把数据从客户端发向后端 
                err := stream.SendMsg(f) 
 if err != nil { 
                    logrus.Errorf("stream will resend msg and close, addr:%v, err:%v", addr, err) 
 // 如果这条消息发送失败,就调用失败回调 
                    msg.ErrCallBack(msg.Msg, msg.Ttime) 
 return 
 } 
 case <-s.ctx.Done(): 
 return 
 } 
 } 
 }() 
 return nil 
} 

这相当于引入一个baseCh,把Send函数改造成了一进多出的模式。从而不会让一个stream的阻塞频繁的卡住所有数据的发送。让所有的数据发送被归集到baseCh,而不是每次发送都等待超时。

在做这一个改动时,有一点顾虑: chan本质上是一个有锁队列,频繁的加锁会不会反而影响吞吐?

这里需要指出,bashCh使用的是无缓冲channel。理论上,无缓冲channel的性能会优于有缓冲的channel,因为不需要管理内置的队列。这在一些测评中有所体现。

实践是检验真理的唯一标准,立马上线灰度,发现多虑了。10000个写入端频繁调用Send函数时,系统资源并没有太大的波动。反而磁盘缓冲的使用大大减少了。数据的超时数维持在原有水平(因为卡的stream还是会卡),但它不会再影响都其它的数据,使之写入缓存。

分批灰度变更,使得磁盘缓冲现在的使用几乎归零。

当看到监控图后,我激动的哇的一声哭出来,心里比吃了蜜还甜,感到自己的技术又精甚了不少。胸口的红领巾更红了。

rpc

0 人点赞