Spark Sreaming实战(二)-小试流式处理

2022-11-30 15:04:57 浏览数 (2)

1 业务分析

1.1 需求

统计主站每个(指定)教程访问的客户端、地域信息分布

地域: ip转换 Spark SQL项目实战 客户端:useragent获取 Hadoop基础教程

=》如上两个操作:采用离线(Spark/MapReduce )的方式进行统计

1.2 实现步骤

课程编号、ip信息、useragent 进行相应的统计分析操作: MapReduce/Spark

1.3 项目架构

日志收集: Flume 离线分析: MapReduce/Spark 统计结果图形化展示

看起来很简单,没什么高深的,但是现在需求改了嘛,很正常的骚操作对不对! 现在要求实时的精度大幅度提高!那么现在的架构已经无法满足需求了!

1.3.1 问题

小时级别 10分钟 5分钟 1分钟 秒级别 根本达不到精度要求!

实时流处理,应运而生!

2 实时流处理产生背景

◆ 时效性高 ◆ 数据量大

◆ 实时流处理架构与技术选型

3 实时流处理概述

  • 实时计算:响应时间比较短。
  • 流式计算:数据不断的进入,不停顿。
  • 实时流式计算:在不断产生的数据流上,进行实时计算

4 离线计算与实时计算对比

4.1 数据来源

离线:HDFS历史数据,数据量较大。 实时:消息队列(Kafka),实时新增/修改记录实时过来的某一笔数据。

4.2 处理过程

离线:Map Reduce 实时:Spark(DStream/SS)

4.3 处理速度

离线:速度慢 实时:快速拿到结果

4.4 进程角度

离线:启动 销毁进程 实时: 7 * 24小时进行统计,线程不停止

5 实时流处理架构与技术选型

  • Flume实时收集WebServer产生的日志
  • 添加Kafka消息队列,进行流量消峰,防止Spark/Storm崩掉
  • 处理完数据,持久化到RDBMS/NoSQL
  • 最后进行可视化展示

Kafka、Flume一起搭配更舒服哦~

6 实时流处理在企业中的应用

  • 电信行业:推荐流量包
  • 电商行业:推荐系统算法

X 交流学习

Java交流群

博客

Github

0 人点赞