只要使用Redis做缓存,就必然存在缓存和DB数据一致性问题。若数据不一致,则业务应用从缓存读取的数据就不是最新数据,可能导致严重错误。比如将商品的库存缓存在Redis,若库存数量不对,则下单时就可能出错,这是不能接受的。
1 什么是缓存和DB的数据一致性
一致性
包含如下情况:
- 缓存有数据 缓存的数据值需和DB相同
- 缓存无数据 DB必须是最新值
不符合这两种情况的,都属于缓存和DB数据不一致。
2 缓存的读写模式
根据是否接收写请求,可将缓存分成读写缓存和只读缓存。
2.1 读写缓存
若要对数据进行增删改,需要在Cache进行。 同时根据采取的写回策略,决定是否同步写回DB:
2.1.1 同步直写
写缓存时,也同步写数据库,缓存和数据库中的数据一致。
2.1.2 异步写回
写缓存时不同步写DB,等到数据从缓存中淘汰时,再写回DB。使用这种策略时,若数据还没有写回DB,缓存就发生故障,则此时,DB就没有最新数据了。
所以,对于读写缓存,要想保证缓存和DB数据一致,就要采用同步直写
。若采用这种策略,就需同时更新缓存和DB。所以,要在业务代码中使用事务,保证缓存和DB更新的原子性,即两者:
- 要么一起更新
- 要么都不更新,返回错误信息,进行重试
否则,我们无法实现同步直写。
有些场景下,我们对数据一致性要求不高,比如缓存的是电商商品的非关键属性或短视频的创建或修改时间等,则可以使用异步写回
。
2.2 只读缓存
- 新增数据 直接写DB
- 删改数据 删改DB,删除只读缓存中的数据
这样应用后续再访问这些增删改的数据时,由于Cache无数据 =》缓存缺失。 此时,再从DB把数据读入Cache,这样后续再访问数据时,直接读Cache。
下面我们针对只读缓存,看看具体会遇到哪些问题,又该如何解决。
3 新增数据
数据直接写到DB,不操作Cache。此时,Cache本身无新增数据,而DB是最新值,所以,此时缓存和DB数据一致。
4 删改数据
此时应用既要更新DB,也要删除Cache。这俩操作若无法保证原子性,就可能出现数据不一致。
4.1 先删Cache,再更新DB
4.2 先更新DB,再删除Cache
综上,在更新DB和删除Cache时,无论这俩操作谁先执行,只要有一个操作失败了,就会导致客户端读到旧值。
那怎么办?好像怎么都会导致数据不一致?
5 数据不一致的解决方案
5.1 无并发
重试
将:
- 要删除的Cache值
- 或要更新的DB值
暂存到MQ。
当应用删除Cache或更新DB:
- 成功 把这些值从MQ去除,避免重复操作,这时即可保证DB、Cache数据一致性。
- 失败 重试。从MQ重新读取这些值,然后再次进行删除或更新。若重试超过一定次数,还没成功,就向业务层发送报错信息。
在更新数据库和删除缓存值的过程中,其中一个操作失败了:
先更新DB,再删除缓存
- 若删除缓存失败,再次重试后删除成功
其它情况不再赘述。
即使这两个操作第一次执行时都没有失败,当有大量并发请求时,应用还是有可能读到不一致的数据。 按不同的删除和更新顺序,分成两种情况来看
5.2 高并发
5.2.1 先删除Cache,再更新DB
假设现有时刻t1< t2 < t3,线程 T1、T2:
T1 | T2 | 问题 | |
---|---|---|---|
t1 | 删除缓存 X 的缓存值 | ||
t2 | 1. 读取数据,缓存缺失, 从 DB 读 X,读到旧值 2.把数据 X 写入缓存 | 1.T1 尚未更新 DB,导致 T2 读到旧值 2.T2 把旧值写入缓存,导致其它线程可能读到旧值 | |
t3 | 更新DB 中的 X | 缓存中是旧值,DB 是新值,二者不一致 |
此时,该怎么办呢?
解决方案
T1更新完DB后,让它sleep一段时间,再删除缓存。
为什么要sleep一段时间呢?
为了让T2能够先从DB读数据,再把缺失数据写入缓存,然后,T1再进行删除。 所以,T1 sleep的时间,就需要大于T2读取数据再写入缓存的时间。
这个时间怎么确定?
在业务程序运行时,统计下线程读数据和写缓存的操作时间,以此为基础来进行估算。
这样,当其它线程读数据时,会发现缓存缺失,所以会从DB读最新值。因为这个方案会在第一次删除缓存值后,延迟一段时间再次进行删除,所以称为“延迟双删”。
代码语言:javascript复制redis.delKey(X)
db.update(X)
Thread.sleep(N)
redis.delKey(X)
5.2.2 先更新DB,再删除Cache
T1 | T2 | 问题 | |
---|---|---|---|
t1 | 删除 DB 的数据 X | ||
t2 | 读数据X,Cache命中, 从Cache读X,读到旧值 | T1 尚未删除 Cache导致 T2 读到 Cache 旧值 | |
t3 | 删除 Cache的数据 X |
这种情况下,如果其他线程并发读缓存的请求不多,那么,就不会有很多请求读取到旧值。 而且,线程A一般也会很快删除缓存值,这样一来,其他线程再次读取时,就会发生缓存缺失,进而从数据库中读取最新值。所以,这种情况对业务的影响较小。
至此,Cache和DB数据不一致的原因也都有了对应解决方案。
- 删除Cache或更新DB失败而导致数据不一致 重试,确保删除或更新成功
- 在删除Cache、更新DB这两步操作中,有其他线程的并发读操作,导致其他线程读取到旧值 延迟双删
绝大多数场景都会将Redis作为只读缓存:
- 既可以先删除缓存值再更新数据库
- 也可以先更新数据库再删除缓存
推荐优先使用先更新数据库再删除缓存:
- 先删除缓存值再更新数据库,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力
- 如果业务应用中读取数据库和写缓存的时间不好估算,那么,延迟双删中的等待时间就不好设置
不过,当使用先更新数据库再删除缓存时,也有个地方需要注意,如果业务层要求必须读取一致的数据,那么,我们就需要在更新数据库时,先在Redis缓存客户端暂存并发读请求,等数据库更新完、缓存值删除后,再读取数据,从而保证数据一致性。
6 直接更新 Cache
在只读缓存中进行数据的删改操作时,需要在缓存中删除相应的缓存值。若此过程不是删除缓存,而是直接更新缓存,效果如何?
这种情况相当于把Redis当做读写缓存使用,删改操作同时操作DB、Cache。
6.1 无并发
先更新数据库,再更新缓存
若更新DB成功,但Cache更新失败,此时DB最新值,但缓存旧值,后续读请求会直接命中缓存,得到旧值。
先更新缓存,再更新数据库
如果更新缓存成功,但数据库更新失败:
- 缓存中是最新值
- 数据库中是旧值
后续读请求会直接命中缓存,但得到的是最新值,短期对业务影响不大。但一旦缓存过期或满容后被淘汰,读请求就会从数据库中重新加载旧值到缓存中,之后的读请求会从缓存中得到旧值,对业务产生影响。
针对这种其中一个操作可能失败的情况,类似只读缓存方案,也可使用重试。把第二步操作放入到MQ中,消费者从MQ取出消息,再更新缓存或数据库,成功后把消息从消息队列删除,否则进行重试,以此达到数据库和缓存的最终一致。
6.2 并发读写
也会产生不一致,分为以下4种双写场景。
双写模式下,更新DB有返回值,更新Redis的操作可放到更新DB返回后进行,通过数据库的行锁机制,可以避免更新DB是线程A,B,但更新Redis是线程B,A的情况。
先更新数据库,再更新缓存
写 读并发。 线程A先更新数据库,之后线程B读取数据,此时线程B会命中缓存,读取到旧值,之后线程A更新缓存成功,后续的读请求会命中缓存得到最新值。
这时,线程A未更新完缓存之前,在这期间的读请求会短暂读到旧值,对业务短暂影响。
先更新缓存,再更新数据库
写 读并发。 线程A先更新缓存成功,之后线程B读取数据,此时线程B命中缓存,读取到最新值后返回,之后线程A更新数据库成功。这种场景下,虽然线程A还未更新完数据库,数据库会与缓存存在短暂不一致,但在这之前进来的读请求都能直接命中缓存,获取到最新值,所以对业务没影响。
先更新数据库,再更新缓存
写 写并发。 线程A和线程B同时更新同一条数据,更新数据库的顺序是先A后B,但更新缓存时顺序是先B后A,这会导致数据库和缓存的不一致。
先更新缓存,再更新数据库
写 写并发。 与场景3类似,线程A和线程B同时更新同一条数据,更新缓存的顺序是先A后B,但是更新数据库的顺序是先B后A,这也会导致数据库和缓存的不一致。
场景1和2对业务影响较小,场景3和4会造成数据库和缓存不一致,影响较大。即读写缓存下,写 读并发对业务的影响较小,而写 写并发时,会造成数据库和缓存的不一致。
针对场景3、4解决方案:对于写请求,配合分布式锁。写请求进来时,针对同一资源的修改操作,先加分布式锁,这样同一时间只允许一个线程去更新DB和Cache,没有拿到锁的线程把操作放入到MQ,延时处理。 这样保证多个线程操作同一资源的顺序性,以此保证一致性。
综上,使用读写缓存同时操作数据库和缓存时,因为其中一个操作失败导致不一致的问题,同样可以通过MQ重试解决。 而在并发的场景下,读 写并发对业务没有影响或者影响较小,而写 写并发时需要配合分布式锁的使用,才能保证缓存和数据库的一致性。
另外,读写缓存模式由于会同时更新数据库和缓存:
- 优点 缓存一直会有数据。若更新后立即访问,可直接命中缓存,能降低读请求对DB的压力(没有只读缓存的删除缓存导致缓存缺失和再加载的过程)
- 缺点 若更新后的数据,之后很少再被访问到,会导致缓存中保留的不是最热数据,缓存利用率不高(只读缓存中保留的都是热数据)
所以读写缓存比较适合用于读写相当的业务场景。
总结
延时双删策略
写DB前后都执行redis.del(key)
,并设定合理超时时间。
执行流程
- 先删除缓存
- 再写数据库
- 休眠xx毫秒(根据具体业务时间)
- 再次删除缓存
xx毫秒怎么确定?
需要评估项目读数据业务逻辑耗时,以确保读请求结束,写请求可删除读请求造成的缓存脏数据。
该策略还要考虑 redis 和数据库主从同步的耗时。最后的写数据的休眠时间:则在读数据业务逻辑的耗时的基础上,加上几百ms即可。比如:休眠1秒。
设置缓存过期时间
理论上,设置缓存过期时间,是保证最终一致性的解决方案。 所有的写操作以DB为准,只要到达缓存过期时间,则后面的读请求自然会从DB读取新值,然后回填缓存。
结合双删策略 缓存超时设置,这样最差的情况就是在超时时间内数据存在不一致,而且又增加写请求耗时。
写完数据库后,再次删除缓存成功保证
上述的方案有一个缺点,那就是操作完数据库后,由于种种原因删除缓存失败,这时,可能就会出现数据不一致的情况。 需提供保障重试方案。
方案一
具体流程
- 更新数据库数据
- 缓存因为种种问题删除失败
- 将需要删除的key发送至消息队列
- 自己消费消息,获得需要删除的key
- 继续重试删除操作,直到成功
然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二。 在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。
方案二
具体流程
- 更新数据库数据
- 数据库会将操作信息写入binlog日志当中
- 订阅程序提取出所需要的数据以及key
- 另起一段非业务代码,获得该信息
- 尝试删除缓存操作,发现删除失败
- 将这些信息发送至消息队列
- 重新从消息队列中获得该数据,重试操作。
以上方案都是在业务中经常会碰到的场景,可以依据业务场景的复杂和对数据一致性的要求来选择具体的方案。