Android的bitmap和优化

2022-11-30 16:45:14 浏览数 (2)

内存管理是个永恒的话题!

内存溢出:就是分配的内存不足以放下数据项序列。如在一个域中输入的数据超过了它的要求就会引发数据溢出问题,多余的数据就可以作为指令在计算机上运行。就是你要求分配的内存超出了系统能给你的,系统不能满足需求,于是产生溢出

内存泄漏:是指在堆上分配的内存没有被释放,从而失去对其控制。这样会造成程序能使用的内存越来越少,导致系统运行速度减慢,严重情况会使程序宕掉。

1.在Android应用里,最耗费内存的就是图片资源。而且在Android系统中,读取位图Bitmap时,分给虚拟机中的图片的堆栈大小只有    8M,如果超出了,就会出现OutOfMemory异常。 1) 要及时回收Bitmap的内存 Bitmap类有一个方法recycle(),从方法名可以看出意思是回收。这里就有疑问了,Android系统有自己的垃圾回收机制,可以不定期的回收掉不使用的内存空间,当然也包括Bitmap的空间。那为什么还需要这个方法呢? Bitmap类的构造方法都是私有的,所以开发者不能直接new出一个Bitmap对象,只能通过BitmapFactory类的各种静态方法来实例化一个Bitmap。仔细查看BitmapFactory的源代码可以看到,生成Bitmap对象最终都是通过JNI调用方式实现的。所以,加载Bitmap到内存里以后,是包含两部分内存区域的。简单的说,一部分是Java部分的,一部分是C部分的。这个Bitmap对象是由Java部分分配的,不用的时候系统就会自动回收了,但是那个对应的C可用的内存区域,虚拟机是不能直接回收的,这个只能调用底层的功能释放。所以需要调用recycle()方法来释放C部分的内存。从Bitmap类的源代码也可以看到,recycle()方法里也的确是调用了JNI方法了。 那如果不调用recycle(),是否就一定存在内存泄露呢?也不是的。Android的每个应用都运行在独立的进程里,有着独立的内存,如果整个进程被应用本身或者系统杀死了,内存也就都被释放掉了,当然也包括C部分的内存。 Android对于进程的管理是非常复杂的。简单的说,Android系统的进程分为几个级别,系统会在内存不足的情况下杀死一些低优先级的进程,以提供给其它进程充足的内存空间。在实际项目开发过程中,有的开发者会在退出程序的时候使用Process.killProcess(Process.myPid())的方式将自己的进程杀死,但是有的应用仅仅会使用调用Activity.finish()方法的方式关闭掉所有的Activity。 经验分享: Android手机的用户,根据习惯不同,可能会有两种方式退出整个应用程序:一种是按Home键直接退到桌面;另一种是从应用程序的退出按钮或者按Back键退出程序。那么从系统的角度来说,这两种方式有什么区别呢?按Home键,应用程序并没有被关闭,而是成为了后台应用程序。按Back键,一般来说,应用程序关闭了,但是进程并没有被杀死,而是成为了空进程(程序本身对退出做了特殊处理的不考虑在内)。 Android系统已经做了大量进程管理的工作,这些已经可以满足用户的需求。个人建议,应用程序在退出应用的时候不需要手动杀死自己所在的进程。对于应用程序本身的进程管理,交给Android系统来处理就可以了。应用程序需要做的,是尽量做好程序本身的内存管理工作。 一般来说,如果能够获得Bitmap对象的引用,就需要及时的调用Bitmap的recycle()方法来释放Bitmap占用的内存空间,而不要等Android系统来进行释放。 下面是释放Bitmap的示例代码片段。 // 先判断是否已经回收 if(bitmap != null && !bitmap.isRecycled()){          // 回收并且置为null         bitmap.recycle();          bitmap = null;  }  System.gc(); 从上面的代码可以看到,bitmap.recycle()方法用于回收该Bitmap所占用的内存,接着将bitmap置空,最后使用System.gc()调用一下系统的垃圾回收器进行回收,可以通知垃圾回收器尽快进行回收。这里需要注意的是,调用System.gc()并不能保证立即开始进行回收过程,而只是为了加快回收的到来。 如何调用recycle()方法进行回收已经了解了,那什么时候释放Bitmap的内存比较合适呢?一般来说,如果代码已经不再需要使用Bitmap对象了,就可以释放了。释放内存以后,就不能再使用该Bitmap对象了,如果再次使用,就会抛出异常。所以一定要保证不再使用的时候释放。比如,如果是在某个Activity中使用Bitmap,就可以在Activity的onStop()或者onDestroy()方法中进行回收。 2) 捕获异常 因为Bitmap是吃内存大户,为了避免应用在分配Bitmap内存的时候出现OutOfMemory异常以后Crash掉,需要特别注意实例化Bitmap部分的代码。通常,在实例化Bitmap的代码中,一定要对OutOfMemory异常进行捕获。 以下是代码示例。 Bitmap bitmap = null; try {     // 实例化Bitmap     bitmap = BitmapFactory.decodeFile(path); } catch (OutOfMemoryError e) {     // } if (bitmap == null) {     // 如果实例化失败 返回默认的Bitmap对象     return defaultBitmapMap; } 这里对初始化Bitmap对象过程中可能发生的OutOfMemory异常进行了捕获。如果发生了OutOfMemory异常,应用不会崩溃,而是得到了一个默认的Bitmap图。 经验分享:     很多开发者会习惯性的在代码中直接捕获Exception。但是对于OutOfMemoryError来说,这样做是捕获不到的。因为OutOfMemoryError是一种Error,而不是Exception。在此仅仅做一下提醒,避免写错代码而捕获不到OutOfMemoryError。 3) 缓存通用的Bitmap对象 有时候,可能需要在一个Activity里多次用到同一张图片。比如一个Activity会展示一些用户的头像列表,而如果用户没有设置头像的话,则会显示一个默认头像,而这个头像是位于应用程序本身的资源文件中的。 如果有类似上面的场景,就可以对同一Bitmap进行缓存。如果不进行缓存,尽管看到的是同一张图片文件,但是使用BitmapFactory类的方法来实例化出来的Bitmap,是不同的Bitmap对象。缓存可以避免新建多个Bitmap对象,避免内存的浪费。 经验分享:     Web开发者对于缓存技术是很熟悉的。其实在Android应用开发过程中,也会经常使用缓存的技术。这里所说的缓存有两个级别,一个是硬盘缓存,一个是内存缓存。比如说,在开发网络应用过程中,可以将一些从网络上获取的数据保存到SD卡中,下次直接从SD卡读取,而不从网络中读取,从而节省网络流量。这种方式就是硬盘缓存。再比如,应用程序经常会使用同一对象,也可以放到内存中缓存起来,需要的时候直接从内存中读取。这种方式就是内存缓存。 4) 压缩图片 如果图片像素过大,使用BitmapFactory类的方法实例化Bitmap的过程中,需要大于8M的内存空间,就必定会发生OutOfMemory异常。这个时候该如何处理呢?如果有这种情况,则可以将图片缩小,以减少载入图片过程中的内存的使用,避免异常发生。 使用BitmapFactory.Options设置inSampleSize就可以缩小图片。属性值inSampleSize表示缩略图大小为原始图片大小的几分之一。即如果这个值为2,则取出的缩略图的宽和高都是原始图片的1/2,图片的大小就为原始大小的1/4。 如果知道图片的像素过大,就可以对其进行缩小。那么如何才知道图片过大呢? 使用BitmapFactory.Options设置inJustDecodeBounds为true后,再使用decodeFile()等方法,并不会真正的分配空间,即解码出来的Bitmap为null,但是可计算出原始图片的宽度和高度,即options.outWidth和options.outHeight。通过这两个值,就可以知道图片是否过大了。     BitmapFactory.Options opts = new BitmapFactory.Options();     // 设置inJustDecodeBounds为true     opts.inJustDecodeBounds = true;     // 使用decodeFile方法得到图片的宽和高     BitmapFactory.decodeFile(path, opts);     // 打印出图片的宽和高     Log.d("example", opts.outWidth "," opts.outHeight); 在实际项目中,可以利用上面的代码,先获取图片真实的宽度和高度,然后判断是否需要跑缩小。如果不需要缩小,设置inSampleSize的值为1。如果需要缩小,则动态计算并设置inSampleSize的值,对图片进行缩小。需要注意的是,在下次使用BitmapFactory的decodeFile()等方法实例化Bitmap对象前,别忘记将opts.inJustDecodeBound设置回false。否则获取的bitmap对象还是null。 经验分享: 如果程序的图片的来源都是程序包中的资源,或者是自己服务器上的图片,图片的大小是开发者可以调整的,那么一般来说,就只需要注意使用的图片不要过大,并且注意代码的质量,及时回收Bitmap对象,就能避免OutOfMemory异常的发生。 如果程序的图片来自外界,这个时候就特别需要注意OutOfMemory的发生。一个是如果载入的图片比较大,就需要先缩小;另一个是一定要捕获异常,避免程序Crash。

2.一般来说,优秀的程序员在写完代码之后都会不断的对代码进行重构。重构的好处有很多,其中一点,就是对代码进行优化,提高软件的性能。下面我们就从几个方面来了解Android开发过程中的代码优化。

 1)静态变量引起内存泄露 在代码优化的过程中,我们需要对代码中的静态变量特别留意。静态变量是类相关的变量,它的生命周期是从这个类被声明,到这个类彻底被垃圾回收器回收才会被销毁。所以,一般情况下,静态变量从所在的类被使用开始就要一直占用着内存空间,直到程序退出。如果不注意,静态变量引用了占用大量内存的资源,造成垃圾回收器无法对内存进行回收,就可能造成内存的浪费。 先来看一段代码,这段代码定义了一个Activity。 private static Resources mResources;  @Override protected void onCreate(Bundle state) { super.onCreate(state); if (mResources == null) {     mResources = this.getResources();     } } 这段代码中有一个静态的Resources对象。代码片段mResources = this.getResources()对Resources对象进行了初始化。这时Resources对象拥有了当前Activity对象的引用,Activity又引用了整个页面中所有的对象。如果当前的Activity被重新创建(比如横竖屏切换,默认情况下整个Activity会被重新创建),由于Resources引用了第一次创建的Activity,就会导致第一次创建的Activity不能被垃圾回收器回收,从而导致第一次创建的Activity中的所有对象都不能被回收。这个时候,一部分内存就浪费掉了。 经验分享: 在实际项目中,我们经常会把一些对象的引用加入到集合中,如果这个集合是静态的话,就需要特别注意了。当不需要某对象时,务必及时把它的引用从集合中清理掉。或者可以为集合提供一种更新策略,及时更新整个集合,这样可以保证集合的大小不超过某值,避免内存空间的浪费。  2)使用Application的Context 在Android中,Application Context的生命周期和应用的生命周期一样长,而不是取决于某个Activity的生命周期。如果想保持一个长期生命的对象,并且这个对象需要一个Context,就可以使用Application对象。可以通过调用Context.getApplicationContext()方法或者Activity.getApplication()方法来获得Application对象。 依然拿上面的代码作为例子。可以将代码修改成下面的样子。 private static Resources mResources;  @Override protected void onCreate(Bundle state) { super.onCreate(state); if (mResources == null) {     // mResources = this.getResources();     mResources = this.getApplication().getResources();     } } 在这里将this.getResources()修改为this.getApplication().getResources()。修改以后,Resources对象拥有的是Application对象的引用。如果Activity被重新创建,第一次创建的Activity就可以被回收了。 3)及时关闭资源 Cursor是Android查询数据后得到的一个管理数据集合的类。正常情况下,如果我们没有关闭它,系统会在回收它时进行关闭,但是这样的效率特别低。如果查询得到的数据量较小时还好,如果Cursor的数据量非常大,特别是如果里面有 Blob信息时,就可能出现内存问题。所以一定要及时关闭Cursor。 下面给出一个通用的使用Cursor的代码片段。 Cursor cursor = null; try{     cursor = mContext.getContentResolver().query(uri,null,null,null,null);     if (cursor != null) {         cursor.moveToFirst();         // 处理数据     } } catch (Exception e){     e.printStatckTrace(); } finally {     if (cursor != null){         cursor.close();     } } 即对异常进行捕获,并且在finally中将cursor关闭。同样的,在使用文件的时候,也要及时关闭。 4)使用Bitmap及时调用recycle() 前面的章节讲过,在不使用Bitmap对象时,需要调用recycle()释放内存,然后将它设置为null。虽然调用recycle()并不能保证立即释放占用的内存,但是可以加速Bitmap的内存的释放。在代码优化的过程中,如果发现某个Activity用到了Bitmap对象,却没有显式的调用recycle()释放内存,则需要分析代码逻辑,增加相关代码,在不再使用Bitmap以后调用recycle()释放内存。 5)对Adapter进行优化 下面以构造ListView的BaseAdapter为例说明如何对Adapter进行优化。 在BaseAdapter类中提供了如下方法: public View getView(int position, View convertView, ViewGroup parent) 当ListView列表里的每一项显示时,都会调用Adapter的getView方法返回一个View, 来向ListView提供所需要的View对象。 下面是一个完整的getView()方法的代码示例。 public View getView(int position, View convertView, ViewGroup parent) {   ViewHolder holder; if (convertView == null) {       convertView = mInflater.inflate(R.layout.list_item, null);       holder = new ViewHolder();       holder.text = (TextView) convertView.findViewById(R.id.text);       convertView.setTag(holder);   } else {       holder = (ViewHolder) convertView.getTag();   }   holder.text.setText("line" position);   return convertView; } private class ViewHolder {   TextView text; } 当向上滚动ListView时,getView()方法会被反复调用。getView()的第二个参数convertView是被缓存起来的List条目中的View对象。当ListView滑动的时候,getView可能会直接返回旧的convertView。这里使用了convertView和ViewHolder,可以充分利用缓存,避免反复创建View对象和TextView对象。如果ListView的条目只有几个,这种技巧并不能带来多少性能的提升。但是如果条目有几百甚至几千个,使用这种技巧只会创建几个convertView和ViewHolder(取决于当前界面能够显示的条目数),性能的差别就非常非常大了。 6)代码“微优化”     当今时代已经进入了“微时代”。这里的“微优化”指的是代码层面的细节优化,即不改动代码整体结构,不改变程序原有的逻辑。尽管Android使用的是Dalvik虚拟机,但是传统的Java方面的代码优化技巧在Android开发中也都是适用的。 还有其他: 创建新的对象都需要额外的内存空间,要尽量减少创建新的对象。 将类、变量、方法等等的可见性修改为最小。 针对字符串的拼接,使用StringBuffer替代String。 不要在循环当中声明临时变量,不要在循环中捕获异常。 如果对于线程安全没有要求,尽量使用线程不安全的集合对象。 使用集合对象,如果事先知道其大小,则可以在构造方法中设置初始大小。 文件读取操作需要使用缓存类,及时关闭文件。 慎用异常,使用异常会导致性能降低。 如果程序会频繁创建线程,则可以考虑使用线程池。 7.if(cursor!=null&&!cursor.isClosed()){

cursor.close();         } --- handler.postDelayed(new Runnable(){ @Override public void run() {      mLoadingLayout.setVisibility(View.VISIBLE);      }    }, 1000); ----------------------------             numFlag = 1;                     mMenu = 0;                     if(numFlag < 4){ Message msg = new Message();                         msg.arg1 = ISTouchSystemMessageID.TYPE.INSIDE;                         msg.arg2 = InsideMessageID.ADD_DATA; msg.obj = mPosterInfo;                         mHandler.sendMessage(msg);                     } 经验分享: 代码的微优化有很多很多东西可以讲,小到一个变量的声明,大到一段算法。尤其在代码Review的过程中,可能会反复审查代码是否可以优化。不过我认为,代码的微优化是非常耗费时间的,没有必要从头到尾将所有代码都优化一遍。开发者应该根据具体的业务逻辑去专门针对某部分代码做优化。比如应用中可能有一些方法会被反复调用,那么这部分代码就值得专门做优化。其它的代码,需要开发者在写代码过程中去注意。

(http://blog.csdn.net/jdsjlzx/article/details/7871516)

2.线程惹的祸   线程也是造成内存泄露的一个重要的源头。线程产生内存泄露的主要原因在于线程生命周期的不可控。我们来考虑下面一段代码。   public class MyActivity extends Activity {       @Override       public void onCreate(Bundle savedInstanceState) {             super.onCreate(savedInstanceState);             setContentView(R.layout.main);             new MyThread().start();       }         private class MyThread extends Thread{           @Override             public void run() {                 super.run();      }         }   }        这段代码很平常也很简单,是我们经常使用的形式。我们思考一个问题:假设MyThread的run函数是一个很费时的操作,当我们开启该线程后,将设备的 横屏变为了竖屏,一般情况下当屏幕转换时会重新创建Activity,按照我们的想法,老的Activity应该会被销毁才对,然而事实上并非如此。  

    由于我们的线程是Activity的内部类,所以MyThread中保存了Activity的一个引用,当MyThread的run函数没有结束 时,MyThread是不会被销毁的,因此它所引用的老的Activity也不会被销毁,因此就出现了内存泄露的问题。

这种线程导致的内存泄露问题应该如何解决呢?      第一、将线程的内部类,改为静态内部类。      第二、在线程内部采用弱引用保存Context引用。      另外,Hanlder是线程与Activity通信的桥梁,我们在开发好多应用中会用到线程,有些人处理不当,会导致当程序结束时,线程并没有 被销毁,而是一直在后台运行着,当我们重新启动应用时,又会重新启动一个线程,周而复始,你启动应用次数越多,开启的线程数就越多,你的机器就会变得越慢。  package com.tutor.thread;   public class ThreadDemo extends Activity {       private static final String TAG = "ThreadDemo";       private int count = 0;       private Handler mHandler =  new Handler();       private Runnable mRunnable = new Runnable() {             public void run() {               count ;               setTitle("" count);               //每2秒执行一次                mHandler.postDelayed(mRunnable, 2000);           }               };       @Override       public void onCreate(Bundle savedInstanceState) {           super.onCreate(savedInstanceState);           setContentView(R.layout.main);            //通过Handler启动线程            mHandler.post(mRunnable);       }         }  所以我们在应用退出时,要将线程销毁,我们只要在Activity中的,onDestory()方法处理一下就OK了,如下代码所示:    @Override     protected void onDestroy() {       mHandler.removeCallbacks(mRunnable);       super.onDestroy();     } 

0 人点赞