【八】强化学习之DDPG---PaddlePaddlle【PARL】框架{飞桨}

2022-12-01 16:01:56 浏览数 (1)

相关文章:

【一】飞桨paddle【GPU、CPU】安装以及环境配置 python入门教学

【二】-Parl基础命令

【三】-Notebook、&pdb、ipdb 调试

【四】-强化学习入门简介

【五】-Sarsa&Qlearing详细讲解

【六】-DQN

【七】-Policy Gradient

【八】-DDPG

【九】-四轴飞行器仿真

  • 飞桨paddle遇到bug调试修正【迁移工具、版本兼容性】
  • paddle DeBug 三步定位PARL飞桨报错原因,快速解决程序问题

代码链接:码云:https://gitee.com/dingding962285595/parl_work  ;github:https://github.com/PaddlePaddle/PARL


一、AI Studio 项目详解【VisualDL工具】

二、AI Studio 项目详解【环境使用说明、脚本任务】

三、AI Studio 项目详解【分布式训练-单机多机】

四、AI Studio 项目详解【图形化任务】

五、AI Studio 项目详解【在线部署及预测】


1. 连续动作空间

离散动作&连续动作

2.DDPG讲解Deep Deterministic Policy Gradient

  • deep-神经网络--DNQ扩展 

目标网络 target work

经验回放 replay memory

  • Deterministic Policy Gradient  

·Deterministic    直接输出确定的动作

·Policy Gradient  单步更新的policy网络

 DDPG是DQN的扩展版本,可以扩展到连续控制动作空间

2.1 策略网络:

actor对外输出动作;critic会对每个输出的网络进行评估。刚开始随机参数初始化,然后根据reward不断地反馈。

目标网络target network 经验回放ReplayMemory

两个target_Q/P网络的作用是稳定Q网络里的Q_target 复制原网络一段时间不变。

2.2 经验回放ReplayMemory

用到数据:

  • Agent把产生的数据传给algorithmalgorithm根据model的模型结构计算出Loss,使用SGD或者其他优化器不断的优化,PARL这种架构可以很方便的应用在各类深度强化学习问题中。

(1)Model

Model用来定义前向(Forward)网络,用户可以自由的定制自己的网络结构

代码语言:javascript复制
class Model(parl.Model):
    def __init__(self, act_dim):
        self.actor_model = ActorModel(act_dim)
        self.critic_model = CriticModel()
 
    def policy(self, obs):
        return self.actor_model.policy(obs)
 
    def value(self, obs, act):
        return self.critic_model.value(obs, act)
 
    def get_actor_params(self):
        return self.actor_model.parameters()
代码语言:javascript复制
class ActorModel(parl.Model):
    def __init__(self, act_dim):
        hid_size = 100
 
        self.fc1 = layers.fc(size=hid_size, act='relu')
        self.fc2 = layers.fc(size=act_dim, act='tanh')
 
    def policy(self, obs):
        hid = self.fc1(obs)
        means = self.fc2(hid)
        return means
代码语言:javascript复制
class CriticModel(parl.Model):
    def __init__(self):
        hid_size = 100
 
        self.fc1 = layers.fc(size=hid_size, act='relu')
        self.fc2 = layers.fc(size=1, act=None)
 
    def value(self, obs, act):
        concat = layers.concat([obs, act], axis=1)
        hid = self.fc1(concat)
        Q = self.fc2(hid)
        Q = layers.squeeze(Q, axes=[1])
        return Q

(2)Algorithm

  • Algorithm 定义了具体的算法来更新前向网络(Model),也就是通过定义损失函数来更新Model,和算法相关的计算都放在algorithm中。
代码语言:javascript复制
    def _critic_learn(self, obs, action, reward, next_obs, terminal):
        next_action = self.target_model.policy(next_obs)
        next_Q = self.target_model.value(next_obs, next_action)
 
        terminal = layers.cast(terminal, dtype='float32')
        target_Q = reward   (1.0 - terminal) * self.gamma * next_Q
        target_Q.stop_gradient = True
 
        Q = self.model.value(obs, action)
        cost = layers.square_error_cost(Q, target_Q)
        cost = layers.reduce_mean(cost)
        optimizer = fluid.optimizer.AdamOptimizer(self.critic_lr)
        optimizer.minimize(cost)
        return cost
 

代码语言:javascript复制
    def _actor_learn(self, obs):
        action = self.model.policy(obs)
        Q = self.model.value(obs, action)
        cost = layers.reduce_mean(-1.0 * Q)
        optimizer = fluid.optimizer.AdamOptimizer(self.actor_lr)
        optimizer.minimize(cost, parameter_list=self.model.get_actor_params())
        return cost
 

软更新:每次更新一点参数,用tau控制,按比例更新

硬更新:是每隔一段时间全部参数都更新

代码语言:javascript复制
    def sync_target(self, decay=None, share_vars_parallel_executor=None):
        """ self.target_model从self.model复制参数过来,若decay不为None,则是软更新
        """
        if decay is None:
            decay = 1.0 - self.tau
        self.model.sync_weights_to(
            self.target_model,
            decay=decay,
            share_vars_parallel_executor=share_vars_parallel_executor)

(3)Agent

  • Agent负责算法与环境的交互,在交互过程中把生成的数据提供给Algorithm来更新模型(Model),数据的预处理流程也一般定义在这里。
代码语言:javascript复制
class Agent(parl.Agent):
    def __init__(self, algorithm, obs_dim, act_dim):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(Agent, self).__init__(algorithm)
 
        # 注意:最开始先同步self.model和self.target_model的参数.
        self.alg.sync_target(decay=0)
 
    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()
 
        with fluid.program_guard(self.pred_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.pred_act = self.alg.predict(obs)
 
        with fluid.program_guard(self.learn_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            act = layers.data(
                name='act', shape=[self.act_dim], dtype='float32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs', shape=[self.obs_dim], dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            _, self.critic_cost = self.alg.learn(obs, act, reward, next_obs,
                                                 terminal)
 
    def predict(self, obs):
        obs = np.expand_dims(obs, axis=0)
        act = self.fluid_executor.run(
            self.pred_program, feed={'obs': obs},
            fetch_list=[self.pred_act])[0]
        act = np.squeeze(act)
        return act
 
    def learn(self, obs, act, reward, next_obs, terminal):
        feed = {
            'obs': obs,
            'act': act,
            'reward': reward,
            'next_obs': next_obs,
            'terminal': terminal
        }
        critic_cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.critic_cost])[0]
        self.alg.sync_target()
        return critic_cost
 

(4)env.py

连续控制版本的CartPole环境

  • 该环境代码与算法无关,可忽略不看,参考gym

(5)经验池 ReplayMemory

DQNreplay_mamory.py代码一致

代码语言:javascript复制
class ReplayMemory(object):
    def __init__(self, max_size):
        self.buffer = collections.deque(maxlen=max_size)
 
    def append(self, exp):
        self.buffer.append(exp)
 
    def sample(self, batch_size):
        mini_batch = random.sample(self.buffer, batch_size)
        obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []
 
        for experience in mini_batch:
            s, a, r, s_p, done = experience
            obs_batch.append(s)
            action_batch.append(a)
            reward_batch.append(r)
            next_obs_batch.append(s_p)
            done_batch.append(done)
 
        return np.array(obs_batch).astype('float32'), 
            np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),
            np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')
 
    def __len__(self):
        return len(self.buffer)
 
 

(6)train

代码语言:javascript复制
# 训练一个episode
def run_episode(agent, env, rpm):
    obs = env.reset()
    total_reward = 0
    steps = 0
    while True:
        steps  = 1
        batch_obs = np.expand_dims(obs, axis=0)
        action = agent.predict(batch_obs.astype('float32'))
 
        # 增加探索扰动, 输出限制在 [-1.0, 1.0] 范围内
        action = np.clip(np.random.normal(action, NOISE), -1.0, 1.0)
 
        next_obs, reward, done, info = env.step(action)
 
        action = [action]  # 方便存入replaymemory
        rpm.append((obs, action, REWARD_SCALE * reward, next_obs, done))
 
        if len(rpm) > MEMORY_WARMUP_SIZE and (steps % 5) == 0:
            (batch_obs, batch_action, batch_reward, batch_next_obs,
             batch_done) = rpm.sample(BATCH_SIZE)
            agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs,
                        batch_done)
 
        obs = next_obs
        total_reward  = reward
 
        if done or steps >= 200:
            break
    return total_reward

增加扰动保持探索,添加一个高斯噪声。np.clip做一下裁剪,确保在合适的范围内。

总结

0 人点赞