第16章 强化学习
来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@friedhelm739 校对:@飞龙
强化学习(RL)如今是机器学习的一大令人激动的领域,当然之前也是。自从 1950 年被发明出来后,它在这些年产生了一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和及其控制领域,但是从未弄出什么大新闻。直到 2013 年一个革命性的发展:来自英国的研究者发起了一项 Deepmind 项目,这个项目可以学习去玩任何从头开始的 Atari 游戏,甚至多数比人类玩的还要好,它仅适用像素作为输入并且没有游戏规则的任何先验知识。这是一系列令人惊叹的壮举,在 2016 年 3 月以他们的系统阿尔法狗战胜了世界围棋冠军李世石。没有一个程序能接近这个游戏的主宰,更不用说世界冠军了。今天,RL 的整个领域正在沸腾着新的想法,其都具有广泛的应用范围。DeepMind 在 2014 被谷歌以超过 5 亿美元收购。
那么他们是怎么做到的呢?事后看来,原理似乎相当简单:他们将深度学习运用到强化学习领域,结果却超越了他们最疯狂的设想。在本章中,我们将首先解释强化学习是什么,以及它擅长于什么,然后我们将介绍两个在深度强化学习领域最重要的技术:策略梯度和深度 Q 网络(DQN),包括讨论马尔可夫决策过程(MDP)。我们将使用这些技术来训练一个模型来平衡移动车上的杆子,另一个玩 Atari 游戏。同样的技术可以用于各种各样的任务,从步行机器人到自动驾驶汽车。