维度模型数据仓库(八) —— 维度子集

2022-12-02 14:12:05 浏览数 (2)

(五)进阶技术         3. 维度子集         有些需求不需要最细节的数据。例如更想要某个月而不是某天的记录。再比如相对于全部的销售数据,可能对某些特定状态的数据更感兴趣等。这些特定维度包含在从细节维度选择的行中,所以叫维度子集。维度子集比细节维度小,因此更易使用,查询也更快。         本篇中将准备两个特定维度,它们均取自现有的维度:月份维度(日期维度的子集),Pennsylvania州客户维度(客户维度的子集)。清单(五)-3-1里的脚本用于建立月份维度,并从日期维度初始装载月份维度。注意月份维度不包含promo_ind列,该列不适用月层次上,因为一个月中可能有多个促销期。促销标记适用于日层次。

代码语言:javascript复制
USE dw;

CREATE TABLE month_dim (
    month_sk INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    month_name VARCHAR(9),
    month INT(2),
    quarter INT(1),
    year INT(4),
    effective_date DATE,
    expiry_date DATE
) ;

INSERT INTO month_dim
SELECT DISTINCT
  NULL
, month_name
, month
, quarter
, year
, effective_date
, expiry_date
FROM date_dim ;

COMMIT ;

清单(五)-3-1

        为了从日期维度同步导入月份维度,要把月份装载嵌入到日期维度的预装载脚本中。需要修改“准备数据仓库模拟环境”里生成日期维度数据的存储过程。清单(五)-3-2中显示了修改后的存储过程。无论何时用修改后的脚本增加日期记录时,如果这个日期所在的月份没在月份维度中,那么该月份会被装载到月份维度中。

代码语言:javascript复制
USE dw;

DELIMITER // ;

DROP PROCEDURE IF EXISTS pre_populate_date //

CREATE PROCEDURE pre_populate_date (IN start_dt DATE, IN end_dt
       DATE)
BEGIN
       WHILE start_dt <= end_dt DO
             INSERT INTO date_dim(
               date_sk
             , date
             , month_name
             , month
             , quarter
             , year
             , effective_date
             , expiry_date
             )
             VALUES(
               NULL
             , start_dt
             , MONTHNAME(start_dt)
             , MONTH(start_dt)
             , QUARTER(start_dt)
             , YEAR (start_dt)
             , '0000-00-00'
             , '9999-12-31'
     )
             ;
             SET start_dt = ADDDATE(start_dt, 1);
      END WHILE;

      INSERT INTO month_dim
      SELECT DISTINCT
        NULL
        , month_name
        , month
        , quarter
        , year
        , effective_date
        , expiry_date
      FROM date_dim
     WHERE CONCAT(month, year) NOT IN (SELECT CONCAT(month, year) FROM month_dim) ;

END
//

DELIMITER ; //

清单(五)-3-2

为测试修改后的日期预装载,使用下面的命令运行存储过程增加从2021年1月1日到2021年12月31日的日期。 USE dw ; call pre_populate_date ('2021-01-01', '2021-12-31'); COMMIT ; 使用下面的语句查询month_dim表,确认有12个月份被正确装载。 select * from month_dim where year = 2021 ;

        在“准备数据仓库模拟环境”里除了使用存储过程,还使用了Kettle转换预装载日期维度数据。这里对转换也做一些修改,使之同时预装载日期维度和月份维度数据。修改后的Kettle转换步骤如图(五)- 3-1到图(五)- 3-13所示。其中JavaScript步骤的代码没有变化,参见“准备数据仓库模拟环境”里的清单(二)- 2。

图(五)- 3-1

图(五)- 3-2

图(五)- 3-3

图(五)- 3-4

图(五)- 3-5

图(五)- 3-6

图(五)- 3-7

图(五)- 3-8

图(五)- 3-9

图(五)- 3-10

图(五)- 3-11

图(五)- 3-12

图(五)- 3-13

        月份维度是一个上卷维度,它包含基本维度的上层数据。而特定维度子集是选择基本维度的一个特定子集。清单(五)-3-3里的脚本建立特定维度表,并导入Pennsylvania (PA)客户维度子集。

代码语言:javascript复制
USE dw;

CREATE TABLE pa_customer_dim (
    customer_sk INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
    customer_number INT,
    customer_name VARCHAR(50),
    customer_street_address VARCHAR(50),
    customer_zip_code INT(5),
    customer_city VARCHAR(30),
    customer_state VARCHAR(2),
    shipping_address VARCHAR(50),
    shipping_zip_code INT(5),
    shipping_city VARCHAR(30),
    shipping_state VARCHAR(2),
	version INT,
    effective_date DATE,
    expiry_date DATE
);

INSERT INTO pa_customer_dim
SELECT
  customer_sk
, customer_number
, customer_name
, customer_street_address
, customer_zip_code
, customer_city
, customer_state
, shipping_address
, shipping_zip_code
, shipping_city
, shipping_state
, version
, effective_date
, expiry_date
FROM customer_dim
WHERE customer_state = 'PA' ;

COMMIT ;

清单(五)-3-3

        注意 PA客户维度子集与月份维度子集有两点区别:

  • pa_customer_dim表和customer_dim表有完全相同的列。month_dim不包含date_dim表的日期列。
  • pa_customer_dim表的代理键就是客户维度的代理键。month_dim表里的月份维度代理键并不来自日期维度。

为了测试清单(五)-3-3的脚本,先用下面的命令添加三个Ohio的客户。 USE dw; INSERT INTO customer_dim ( customer_sk , customer_number , customer_name , customer_street_address , customer_zip_code , customer_city , customer_state , shipping_address , shipping_zip_code , shipping_city , shipping_state , version , effective_date , expiry_date ) VALUES   (NULL, 10, 'Bigger Customers', '7777 Ridge Rd.', '44102',        'Cleveland', 'OH', '7777 Ridge Rd.', '44102', 'Cleveland',        'OH', 1, '2015-03-02', '2200-01-01') , (NULL, 11, 'Smaller Stores', '8888 Jennings Fwy.', '44102',        'Cleveland', 'OH', '8888 Jennings Fwy.', '44102',        'Cleveland', 'OH', 1, '2015-03-02', '2200-01-01') , (NULL, 12, 'Small-Medium Retailers', '9999 Memphis Ave.', '44102',        'Cleveland', 'OH', '9999 Memphis Ave.', '44102', 'Cleveland',        'OH', 1, '2015-03-02', '2200-01-01') ; COMMIT ; 执行清单(五)-3-3里的脚本,使用下面的查询语句确认三个OH用户信息被正确装载。确认三个OH用户信息被正确装载,pa_customer_dim表中只有PA客户的信息。 select customer_name, customer_state, effective_date from customer_dim; select customer_name, customer_state, effective_date from pa_customer_dim;         修改定期装载         无论何时当一个新的PA客户信息插入到客户维度表,它也应该插入PA客户维度表。所以应该把PA客户维度子集的装载合并到数据仓库定期装载中。清单(五)-3-4显示了修改后的定期装载脚本。改变(增加)注意,在每次运行按天定期导入脚本时会重建(清除,然后添加所有的PA客户)PA客户维度子集。

代码语言:javascript复制
USE dw;

-- 设置SCD的截止时间和生效时间
SET @pre_date = SUBDATE(CURRENT_DATE,1) ;

-- 设置CDC的上限时间
UPDATE cdc_time SET current_load = CURRENT_DATE ;

-- 装载客户维度
TRUNCATE TABLE customer_stg;
INSERT INTO customer_stg
SELECT 
  customer_number
, customer_name
, customer_street_address
, customer_zip_code
, customer_city
, customer_state
, shipping_address
, shipping_zip_code
, shipping_city
, shipping_state
FROM source.customer ;
/* 在所有地址列上 SCD2                           */
/* 置过期                          */
UPDATE customer_dim a,
    customer_stg b 
SET 
    expiry_date = @pre_date
WHERE
    a.customer_number = b.customer_number
        AND (a.customer_street_address <> b.customer_street_address
        OR a.customer_city <> b.customer_city
        OR a.customer_zip_code <> b.customer_zip_code
        OR a.customer_state <> b.customer_state
        OR a.shipping_address <> b.shipping_address
        OR a.shipping_city <> b.shipping_city
        OR a.shipping_zip_code <> b.shipping_zip_code
        OR a.shipping_state <> b.shipping_state
        OR a.shipping_address IS NULL
        OR a.shipping_city IS NULL
        OR a.shipping_zip_code IS NULL
        OR a.shipping_state IS NULL)
        AND expiry_date = '2200-01-01';
/* 加新行                          */
INSERT INTO customer_dim
SELECT
  NULL
, b.customer_number
, b.customer_name
, b.customer_street_address
, b.customer_zip_code
, b.customer_city
, b.customer_state
, b.shipping_address
, b.shipping_zip_code
, b.shipping_city
, b.shipping_state
, a.version   1
, @pre_date
, '2200-01-01'
FROM
  customer_dim a
, customer_stg b
WHERE
    a.customer_number = b.customer_number
AND ( a.customer_street_address <> b.customer_street_address
     OR a.customer_city <> b.customer_city
     OR a.customer_zip_code <> b.customer_zip_code
     OR a.customer_state <> b.customer_state
     OR a.shipping_address <> b.shipping_address
     OR a.shipping_city <> b.shipping_city
     OR a.shipping_zip_code <> b.shipping_zip_code
     OR a.shipping_state <> b.shipping_state
     OR a.shipping_address IS NULL
     OR a.shipping_city IS NULL
     OR a.shipping_zip_code IS NULL
     OR a.shipping_state IS NULL)
AND EXISTS(
SELECT *
FROM customer_dim x
WHERE
    b.customer_number=x.customer_number
AND a.expiry_date = @pre_date )
AND NOT EXISTS (
SELECT *
FROM customer_dim y
WHERE
    b.customer_number = y.customer_number
AND y.expiry_date = '2200-01-01') ;
/* 在 customer_name 列上 SCD1                                             */
UPDATE customer_dim a, customer_stg b
SET a.customer_name = b.customer_name
WHERE a.customer_number = b.customer_number
      AND a.customer_name <> b.customer_name ;
/* 新增的客户                                                   */
INSERT INTO customer_dim
SELECT
  NULL
, customer_number
, customer_name
, customer_street_address
, customer_zip_code
, customer_city
, customer_state
, shipping_address
, shipping_zip_code
, shipping_city
, shipping_state
, 1
, @pre_date
,'2200-01-01'
FROM customer_stg
WHERE customer_number NOT IN(
SELECT y.customer_number
FROM customer_dim x, customer_stg y
WHERE x.customer_number = y.customer_number) ;

/* 重建PA客户维度                               */
TRUNCATE pa_customer_dim;
INSERT INTO pa_customer_dim
SELECT
  customer_sk
, customer_number
, customer_name
, customer_street_address
, customer_zip_code
, customer_city
, customer_state
, shipping_address
, shipping_zip_code
, shipping_city
, shipping_state
, version
, effective_date
, expiry_date
FROM customer_dim
WHERE customer_state = 'PA' ;

/* 装载产品维度                                           */
TRUNCATE TABLE product_stg ;
INSERT INTO product_stg
SELECT 
  product_code
, product_name
, product_category
FROM source.product ;
/* 在 product_name 和 product_category 列上 SCD2                                    */
/* 置过期                                 */
UPDATE
  product_dim a
, product_stg b
SET
  expiry_date = @pre_date
WHERE
    a.product_code = b.product_code
AND (   a.product_name <> b.product_name
     OR a.product_category <> b.product_category)
AND expiry_date = '2200-01-01';
/* 加新行                                */
INSERT INTO product_dim
SELECT
  NULL
, b.product_code
, b.product_name
, b.product_category
, a.version   1
, @pre_date
,'2200-01-01'
FROM
  product_dim a
, product_stg b
WHERE
    a.product_code = b.product_code
AND (   a.product_name <> b.product_name
     OR a.product_category <> b.product_category)
AND EXISTS(
SELECT *
FROM product_dim x
WHERE     b.product_code = x.product_code
      AND a.expiry_date = @pre_date)
AND NOT EXISTS (
SELECT *
FROM product_dim y
WHERE     b.product_code = y.product_code
      AND y.expiry_date = '2200-01-01') ;
/* 新增的产品                                                    */
INSERT INTO product_dim
SELECT
  NULL
, product_code
, product_name
, product_category
, 1
, @pre_date
, '2200-01-01'
FROM product_stg
WHERE product_code NOT IN(
SELECT y.product_code
FROM product_dim x, product_stg y
WHERE x.product_code = y.product_code) ;

-- 装载订单维度,新增前一天的订单号
INSERT INTO order_dim (
  order_number
, effective_date
, expiry_date)
SELECT
  order_number
, order_date
, '2200-01-01'
FROM source.sales_order, cdc_time
WHERE entry_date >= last_load AND entry_date < current_load ;

-- 装载事实表,新增前一天的订单
INSERT INTO sales_order_fact
SELECT
  order_sk
, customer_sk
, product_sk
, date_sk
, order_amount
, order_quantity
FROM
  source.sales_order a
, order_dim b
, customer_dim c
, product_dim d
, date_dim e
, cdc_time f
WHERE
    a.order_number = b.order_number
AND a.customer_number = c.customer_number
AND a.order_date >= c.effective_date
AND a.order_date < c.expiry_date
AND a.product_code = d.product_code
AND a.order_date >= d.effective_date
AND a.order_date < d.expiry_date
AND a.order_date = e.date
AND a.entry_date >= f.last_load AND a.entry_date < f.current_load ;

-- 更新时间戳表的last_load字段
UPDATE cdc_time SET last_load = current_load ;

COMMIT ;

清单(五)-3-4

        使用Kettle步骤装PA客户维度子集,只需要增加一个表输入和一个表输出步骤即可,如图(五)- 3-14到(五)- 3-18所示。

图(五)- 3-14

图(五)- 3-15

图(五)- 3-16

图(五)- 3-17

图(五)- 3-18

测试修改后的定期装载 先运行下面的命令往客户维度里添加一个PA的客户和一个OH的客户。 USE dw; INSERT INTO customer_dim ( customer_sk , customer_number , customer_name , customer_street_address , customer_zip_code , customer_city , customer_state , shipping_address , shipping_zip_code , shipping_city , shipping_state , version , effective_date , expiry_date ) VALUES   (NULL, 13, 'PA Customer', '1111 Louise Dr.', '17050',        'Mechanicsburg', 'PA', '1111 Louise Dr.', '17050',        'Mechanicsburg', 'PA', 1, '2015-03-03', '2200-01-01') , (NULL, 14, 'OH Customer', '6666 Ridge Rd.', '44102',        'Cleveland', 'OH', '6666 Ridge Rd.', '44102',        'Cleveland', 'OH', 1, '2015-03-03', '2200-01-01') ; COMMIT ;         现在设置系统日期为2015年3月3日,这样老的数据就不会再次转载,然后使用清单(五)-3-4脚本或修改后的Kettle步骤执行定期转换。执行结果只是增加了pa_customer_dim表的19条记录,其它表的数据不变。 验证结果应该如下所示: mysql> select customer_name, customer_state, effective_date from pa_customer_dim; ------------------------ ---------------- ---------------- | customer_name          | customer_state | effective_date | ------------------------ ---------------- ---------------- | Really Large Customers | PA             | 2013-03-01     | | Small Stores           | PA             | 2013-03-01     | | Medium Retailers       | PA             | 2013-03-01     | | Good Companies         | PA             | 2013-03-01     | | Wonderful Shops        | PA             | 2013-03-01     | | Loyal Clients          | PA             | 2013-03-01     | | Distinguished Agencies | PA             | 2013-03-01     | | Loyal Clients          | PA             | 2015-03-01     | | Subsidiaries           | PA             | 2015-03-01     | | Really Large Customers | PA             | 2015-03-02     | | Small Stores           | PA             | 2015-03-02     | | Medium Retailers       | PA             | 2015-03-02     | | Good Companies         | PA             | 2015-03-02     | | Wonderful Shops        | PA             | 2015-03-02     | | Loyal Clients          | PA             | 2015-03-02     | | Distinguished Agencies | PA             | 2015-03-02     | | Subsidiaries           | PA             | 2015-03-02     | | Online Distributors    | PA             | 2015-03-02     | | PA Customer            | PA             | 2015-03-03     | ------------------------ ---------------- ---------------- 19 rows in set (0.00 sec)

0 人点赞