目录介绍
- 00.问题思考分析
- 01.前沿简单介绍
- 02.如何理解接口隔离原则
- 03.接口理解为一组API接口集合
- 04.接口理解为单个API接口或函数
- 05.接口理解为OOP中的接口概念
- 06.总结一下分享
- 07.思考一道课后题
00.问题思考分析
- 01.什么叫作接口隔离法则,它和面向对象中的接口有何区别?
01.前沿简单介绍
- 学习了 SOLID 原则中的单一职责原则、开闭原则和里式替换原则,今天我们学习第四个原则,接口隔离原则。它对应 SOLID 中的英文字母“I”。
- 对于这个原则,最关键就是理解其中“接口”的含义。那针对“接口”,不同的理解方式,对应在原则上也有不同的解读方式。
- 除此之外,接口隔离原则跟我们之前讲到的单一职责原则还有点儿类似,所以今天我也会具体讲一下它们之间的区别和联系。
02.如何理解接口隔离原则
- 接口隔离原则的英文翻译是“ Interface Segregation Principle”,缩写为 ISP。Robert Martin 在 SOLID 原则中是这样定义它的:“Clients should not be forced to depend upon interfaces that they do not use。”直译成中文的话就是:客户端不应该强迫依赖它不需要的接口。其中的“客户端”,可以理解为接口的调用者或者使用者。
- 实际上,“接口”这个名词可以用在很多场合中。生活中我们可以用它来指插座接口等。在软件开发中,我们既可以把它看作一组抽象的约定,也可以具体指系统与系统之间的 API 接口,还可以特指面向对象编程语言中的接口等。
- 前面我提到,理解接口隔离原则的关键,就是理解其中的“接口”二字。在这条原则中,我们可以把“接口”理解为下面三种东西:
- 一组 API 接口集合
- 单个 API 接口或函数
- OOP 中的接口概念
03.接口理解为一组API接口集合
- 还是结合一个例子来讲解。微服务用户系统提供了一组跟用户相关的 API 给其他系统使用,比如:注册、登录、获取用户信息等。具体代码如下所示:public interface UserService { boolean register(String cellphone, String password); boolean login(String cellphone, String password); UserInfo getUserInfoById(long id); UserInfo getUserInfoByCellphone(String cellphone); }
public class UserServiceImpl implements UserService {
代码语言:txt复制 //...
代码语言:txt复制}
代码语言:txt复制- 现在,我们的后台管理系统要实现删除用户的功能,希望用户系统提供一个删除用户的接口。这个时候我们该如何来做呢?你可能会说,这不是很简单吗,我只需要在 UserService 中新添加一个 deleteUserByCellphone() 或 deleteUserById() 接口就可以了。这个方法可以解决问题,但是也隐藏了一些安全隐患。
- 删除用户是一个非常慎重的操作,我们只希望通过后台管理系统来执行,所以这个接口只限于给后台管理系统使用。如果我们把它放到 UserService 中,那所有使用到 UserService 的系统,都可以调用这个接口。不加限制地被其他业务系统调用,就有可能导致误删用户。
- 当然,最好的解决方案是从架构设计的层面,通过接口鉴权的方式来限制接口的调用。不过,如果暂时没有鉴权框架来支持,我们还可以从代码设计的层面,尽量避免接口被误用。我们参照接口隔离原则,调用者不应该强迫依赖它不需要的接口,将删除接口单独放到另外一个接口 RestrictedUserService 中,然后将 RestrictedUserService 只打包提供给后台管理系统来使用。具体的代码实现如下所示:public interface UserService {
boolean register(String cellphone, String password);
boolean login(String cellphone, String password);
UserInfo getUserInfoById(long id);
UserInfo getUserInfoByCellphone(String cellphone);
}
public interface RestrictedUserService {
boolean deleteUserByCellphone(String cellphone);
boolean deleteUserById(long id);
}
public class UserServiceImpl implements UserService, RestrictedUserService {
// ...省略实现代码...
}
- 在刚刚的这个例子中,我们把接口隔离原则中的接口,理解为一组接口集合,它可以是某个微服务的接口,也可以是某个类库的接口等等。在设计微服务或者类库接口的时候,如果部分接口只被部分调用者使用,那我们就需要将这部分接口隔离出来,单独给对应的调用者使用,而不是强迫其他调用者也依赖这部分不会被用到的接口。
04.接口理解为单个API接口或函数
- 现在我们再换一种理解方式,把接口理解为单个接口或函数(以下为了方便讲解,我都简称为“函数”)。那接口隔离原则就可以理解为:函数的设计要功能单一,不要将多个不同的功能逻辑在一个函数中实现。接下来,我们还是通过一个例子来解释一下。public class Statistics { private Long max; private Long min; private Long average; private Long sum; private Long percentile99; private Long percentile999; //...省略constructor/getter/setter等方法... }
public Statistics count(Collection<Long> dataSet) {
代码语言:txt复制 Statistics statistics = new Statistics();
代码语言:txt复制 //...省略计算逻辑...
代码语言:txt复制 return statistics;
代码语言:txt复制}
代码语言:txt复制- 在上面的代码中,count() 函数的功能不够单一,包含很多不同的统计功能,比如,求最大值、最小值、平均值等等。按照接口隔离原则,我们应该把 count() 函数拆成几个更小粒度的函数,每个函数负责一个独立的统计功能。拆分之后的代码如下所示:public Long max(Collection<Long> dataSet) { //... }
public Long min(Collection<Long> dataSet) { //... }
public Long average(Colletion<Long> dataSet) { //... }
// ...省略其他统计函数...
- 不过,你可能会说,在某种意义上讲,count() 函数也不能算是职责不够单一,毕竟它做的事情只跟统计相关。我们在讲单一职责原则的时候,也提到过类似的问题。实际上,判定功能是否单一,除了很强的主观性,还需要结合具体的场景。
- 如果在项目中,对每个统计需求,Statistics 定义的那几个统计信息都有涉及,那 count() 函数的设计就是合理的。相反,如果每个统计需求只涉及 Statistics 罗列的统计信息中一部分,比如,有的只需要用到 max、min、average 这三类统计信息,有的只需要用到 average、sum。而 count() 函数每次都会把所有的统计信息计算一遍,就会做很多无用功,势必影响代码的性能,特别是在需要统计的数据量很大的时候。所以,在这个应用场景下,count() 函数的设计就有点不合理了,我们应该按照第二种设计思路,将其拆分成粒度更细的多个统计函数。
- 接口隔离原则跟单一职责原则有点类似,不过稍微还是有点区别。
- **单一职责原则针对的是模块、类、接口的设计**。
- 接口隔离原则相对于单一职责原则,一方面它更侧重于接口的设计,另一方面它的思考的角度不同。它提供了一种判断接口是否职责单一的标准:通过调用者如何使用接口来间接地判定。如果调用者只使用部分接口或接口的部分功能,那接口的设计就不够职责单一。
### 05.接口理解为OOP中的接口概念
- 还可以把“接口”理解为 OOP 中的接口概念,比如 Java 中的 interface。我还是通过一个例子来给你解释。假设我们的项目中用到了三个外部系统:Redis、MySQL、Kafka。每个系统都对应一系列配置信息,比如地址、端口、访问超时时间等。为了在内存中存储这些配置信息,供项目中的其他模块来使用,我们分别设计实现了三个 Configuration 类:RedisConfig、MysqlConfig、KafkaConfig。具体的代码实现如下所示。注意,这里我只给出了 RedisConfig 的代码实现,另外两个都是类似的,我这里就不贴了。public class RedisConfig {
private ConfigSource configSource; //配置中心(比如zookeeper)
private String address;
private int timeout;
private int maxTotal;
//省略其他配置: maxWaitMillis,maxIdle,minIdle...
代码语言:txt复制public RedisConfig(ConfigSource configSource) {
代码语言:txt复制 this.configSource = configSource;
代码语言:txt复制}
代码语言:txt复制public String getAddress() {
代码语言:txt复制 return this.address;
代码语言:txt复制}
代码语言:txt复制//...省略其他get()、init()方法...
代码语言:txt复制public void update() {
代码语言:txt复制 //从configSource加载配置到address/timeout/maxTotal...
代码语言:txt复制}
}
public class KafkaConfig { //...省略... }
public class MysqlConfig { //...省略... }
- 现在,我们有一个新的功能需求,希望支持 Redis 和 Kafka 配置信息的热更新。所谓“热更新(hot update)”就是,如果在配置中心中更改了配置信息,我们希望在不用重启系统的情况下,能将最新的配置信息加载到内存中(也就是 RedisConfig、KafkaConfig 类中)。但是,因为某些原因,我们并不希望对 MySQL 的配置信息进行热更新。
- 为了实现这样一个功能需求,我们设计实现了一个 ScheduledUpdater 类,以固定时间频率(periodInSeconds)来调用 RedisConfig、KafkaConfig 的 update() 方法更新配置信息。具体的代码实现如下所示:public interface Updater { void update(); }
public class RedisConfig implemets Updater {
代码语言:txt复制 //...省略其他属性和方法...
代码语言:txt复制 @Override
代码语言:txt复制 public void update() { //... }
代码语言:txt复制}
代码语言:txt复制public class KafkaConfig implements Updater {
代码语言:txt复制 //...省略其他属性和方法...
代码语言:txt复制 @Override
代码语言:txt复制 public void update() { //... }
代码语言:txt复制}
代码语言:txt复制public class MysqlConfig { //...省略其他属性和方法... }
代码语言:txt复制public class ScheduledUpdater {
代码语言:txt复制 private final ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();;
代码语言:txt复制 private long initialDelayInSeconds;
代码语言:txt复制 private long periodInSeconds;
代码语言:txt复制 private Updater updater;
代码语言:txt复制 public ScheduleUpdater(Updater updater, long initialDelayInSeconds, long periodInSeconds) {
代码语言:txt复制 this.updater = updater;
代码语言:txt复制 this.initialDelayInSeconds = initialDelayInSeconds;
代码语言:txt复制 this.periodInSeconds = periodInSeconds;
代码语言:txt复制 }
代码语言:txt复制 public void run() {
代码语言:txt复制 executor.scheduleAtFixedRate(new Runnable() {
代码语言:txt复制 @Override
代码语言:txt复制 public void run() {
代码语言:txt复制 updater.update();
代码语言:txt复制 }
代码语言:txt复制 }, this.initialDelayInSeconds, this.periodInSeconds, TimeUnit.SECONDS);
代码语言:txt复制 }
代码语言:txt复制}
代码语言:txt复制public class Application {
代码语言:txt复制 ConfigSource configSource = new ZookeeperConfigSource(/*省略参数*/);
代码语言:txt复制 public static final RedisConfig redisConfig = new RedisConfig(configSource);
代码语言:txt复制 public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
代码语言:txt复制 public static final MySqlConfig mysqlConfig = new MysqlConfig(configSource);
代码语言:txt复制 public static void main(String[] args) {
代码语言:txt复制 ScheduledUpdater redisConfigUpdater = new ScheduledUpdater(redisConfig, 300, 300);
代码语言:txt复制 redisConfigUpdater.run();
代码语言:txt复制 ScheduledUpdater kafkaConfigUpdater = new ScheduledUpdater(kafkaConfig, 60, 60);
代码语言:txt复制 redisConfigUpdater.run();
代码语言:txt复制 }
代码语言:txt复制}
代码语言:txt复制
代码语言:txt复制- 刚刚的热更新的需求我们已经搞定了。现在,我们又有了一个新的监控功能需求。通过命令行来查看 Zookeeper 中的配置信息是比较麻烦的。所以,我们希望能有一种更加方便的配置信息查看方式。为了实现这样一个功能,我们还需要对上面的代码做进一步改造。改造之后的代码如下所示:public interface Updater {
void update();
}
public interface Viewer {
String outputInPlainText();
Map<String, String> output();
}
public class RedisConfig implemets Updater, Viewer {
//...省略其他属性和方法...
@Override
public void update() { //... }
@Override
public String outputInPlainText() { //... }
@Override
public Map<String, String> output() { //...}
}
public class KafkaConfig implements Updater {
//...省略其他属性和方法...
@Override
public void update() { //... }
}
public class MysqlConfig implements Viewer {
//...省略其他属性和方法...
@Override
public String outputInPlainText() { //... }
@Override
public Map<String, String> output() { //...}
}
public class SimpleHttpServer {
private String host;
private int port;
private Map<String, List<Viewer>> viewers = new HashMap<>();
public SimpleHttpServer(String host, int port) {//...}
public void addViewers(String urlDirectory, Viewer viewer) {
代码语言:txt复制if (!viewers.containsKey(urlDirectory)) {
代码语言:txt复制 viewers.put(urlDirectory, new ArrayList<Viewer>());
代码语言:txt复制}
代码语言:txt复制this.viewers.get(urlDirectory).add(viewer);
}
public void run() { //... }
}
public class Application {
代码语言:txt复制ConfigSource configSource = new ZookeeperConfigSource();
代码语言:txt复制public static final RedisConfig redisConfig = new RedisConfig(configSource);
代码语言:txt复制public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
代码语言:txt复制public static final MySqlConfig mysqlConfig = new MySqlConfig(configSource);
代码语言:txt复制public static void main(String[] args) {
代码语言:txt复制 ScheduledUpdater redisConfigUpdater =
代码语言:txt复制 new ScheduledUpdater(redisConfig, 300, 300);
代码语言:txt复制 redisConfigUpdater.run();
代码语言:txt复制 ScheduledUpdater kafkaConfigUpdater =
代码语言:txt复制 new ScheduledUpdater(kafkaConfig, 60, 60);
代码语言:txt复制 redisConfigUpdater.run();
代码语言:txt复制 SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
代码语言:txt复制 simpleHttpServer.addViewer("/config", redisConfig);
代码语言:txt复制 simpleHttpServer.addViewer("/config", mysqlConfig);
代码语言:txt复制 simpleHttpServer.run();
代码语言:txt复制}
}
- 至此,热更新和监控的需求我们就都实现了。我们来回顾一下这个例子的设计思想。
- 设计了两个功能非常单一的接口:Updater 和 Viewer。ScheduledUpdater 只依赖 Updater 这个跟热更新相关的接口,不需要被强迫去依赖不需要的 Viewer 接口,满足接口隔离原则。同理,SimpleHttpServer 只依赖跟查看信息相关的 Viewer 接口,不依赖不需要的 Updater 接口,也满足接口隔离原则。
- 你可能会说,如果我们不遵守接口隔离原则,不设计 Updater 和 Viewer 两个小接口,而是设计一个大而全的 Config 接口,让 RedisConfig、KafkaConfig、MysqlConfig 都实现这个 Config 接口,并且将原来传递给 ScheduledUpdater 的 Updater 和传递给 SimpleHttpServer 的 Viewer,都替换为 Config,那会有什么问题呢?我们先来看一下,按照这个思路来实现的代码是什么样的。public interface Config { void update(); String outputInPlainText(); Map<String, String> output(); }
public class RedisConfig implements Config {
代码语言:txt复制 //...需要实现Config的三个接口update/outputIn.../output
代码语言:txt复制}
代码语言:txt复制public class KafkaConfig implements Config {
代码语言:txt复制 //...需要实现Config的三个接口update/outputIn.../output
代码语言:txt复制}
代码语言:txt复制public class MysqlConfig implements Config {
代码语言:txt复制 //...需要实现Config的三个接口update/outputIn.../output
代码语言:txt复制}
代码语言:txt复制public class ScheduledUpdater {
代码语言:txt复制 //...省略其他属性和方法..
代码语言:txt复制 private Config config;
代码语言:txt复制 public ScheduleUpdater(Config config, long initialDelayInSeconds, long periodInSeconds) {
代码语言:txt复制 this.config = config;
代码语言:txt复制 //...
代码语言:txt复制 }
代码语言:txt复制 //...
代码语言:txt复制}
代码语言:txt复制public class SimpleHttpServer {
代码语言:txt复制 private String host;
代码语言:txt复制 private int port;
代码语言:txt复制 private Map<String, List<Config>> viewers = new HashMap<>();
代码语言:txt复制 public SimpleHttpServer(String host, int port) {//...}
代码语言:txt复制 public void addViewer(String urlDirectory, Config config) {
代码语言:txt复制 if (!viewers.containsKey(urlDirectory)) {
代码语言:txt复制 viewers.put(urlDirectory, new ArrayList<Config>());
代码语言:txt复制 }
代码语言:txt复制 viewers.get(urlDirectory).add(config);
代码语言:txt复制 }
代码语言:txt复制 public void run() { //... }
代码语言:txt复制}
代码语言:txt复制- 这样的设计思路也是能工作的,但是对比前后两个设计思路,在同样的代码量、实现复杂度、同等可读性的情况下,第一种设计思路显然要比第二种好很多。为什么这么说呢?主要有两点原因。
- 首先,第一种设计思路更加灵活、易扩展、易复用。因为 Updater、Viewer 职责更加单一,单一就意味了通用、复用性好。比如,我们现在又有一个新的需求,开发一个 Metrics 性能统计模块,并且希望将 Metrics 也通过 SimpleHttpServer 显示在网页上,以方便查看。这个时候,尽管 Metrics 跟 RedisConfig 等没有任何关系,但我们仍然可以让 Metrics 类实现非常通用的 Viewer 接口,复用 SimpleHttpServer 的代码实现。具体的代码如下所示:public class ApiMetrics implements Viewer {//...}
public class DbMetrics implements Viewer {//...}
public class Application {
代码语言:txt复制ConfigSource configSource = new ZookeeperConfigSource();
代码语言:txt复制public static final RedisConfig redisConfig = new RedisConfig(configSource);
代码语言:txt复制public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
代码语言:txt复制public static final MySqlConfig mySqlConfig = new MySqlConfig(configSource);
代码语言:txt复制public static final ApiMetrics apiMetrics = new ApiMetrics();
代码语言:txt复制public static final DbMetrics dbMetrics = new DbMetrics();
代码语言:txt复制public static void main(String[] args) {
代码语言:txt复制 SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
代码语言:txt复制 simpleHttpServer.addViewer("/config", redisConfig);
代码语言:txt复制 simpleHttpServer.addViewer("/config", mySqlConfig);
代码语言:txt复制 simpleHttpServer.addViewer("/metrics", apiMetrics);
代码语言:txt复制 simpleHttpServer.addViewer("/metrics", dbMetrics);
代码语言:txt复制 simpleHttpServer.run();
代码语言:txt复制}
}
代码语言:txt复制- 第二种设计思路在代码实现上做了一些无用功。因为 Config 接口中包含两类不相关的接口,一类是 update(),一类是 output() 和 outputInPlainText()。理论上,KafkaConfig 只需要实现 update() 接口,并不需要实现 output() 相关的接口。同理,MysqlConfig 只需要实现 output() 相关接口,并需要实现 update() 接口。但第二种设计思路要求 RedisConfig、KafkaConfig、MySqlConfig 必须同时实现 Config 的所有接口函数(update、output、outputInPlainText)。除此之外,如果我们要往 Config 中继续添加一个新的接口,那所有的实现类都要改动。相反,如果我们的接口粒度比较小,那涉及改动的类就比较少。
06.总结一下分享
- 1.如何理解“接口隔离原则”?
- 理解“接口隔离原则”的重点是理解其中的“接口”二字。这里有三种不同的理解。
- 如果把“接口”理解为一组接口集合,可以是某个微服务的接口,也可以是某个类库的接口等。如果部分接口只被部分调用者使用,我们就需要将这部分接口隔离出来,单独给这部分调用者使用,而不强迫其他调用者也依赖这部分不会被用到的接口。
- 如果把“接口”理解为单个 API 接口或函数,部分调用者只需要函数中的部分功能,那我们就需要把函数拆分成粒度更细的多个函数,让调用者只依赖它需要的那个细粒度函数。
- 如果把“接口”理解为 OOP 中的接口,也可以理解为面向对象编程语言中的接口语法。那接口的设计要尽量单一,不要让接口的实现类和调用者,依赖不需要的接口函数。
- 2.接口隔离原则与单一职责原则的区别
- 单一职责原则针对的是模块、类、接口的设计。接口隔离原则相对于单一职责原则,一方面更侧重于接口的设计,另一方面它的思考角度也是不同的。
- 接口隔离原则提供了一种判断接口的职责是否单一的标准:通过调用者如何使用接口来间接地判定。如果调用者只使用部分接口或接口的部分功能,那接口的设计就不够职责单一。
07.思考一道课后题
- java.util.concurrent 并发包提供了 AtomicInteger 这样一个原子类,其中有一个函数 getAndIncrement() 是这样定义的:给整数增加一,并且返回未増之前的值。
- 我的问题是,这个函数的设计是否符合单一职责原则和接口隔离原则?为什么?/** * Atomically increments by one the current value. * @return the previous value */ public final int getAndIncrement() {//...}