opencv(4.5.3)-python(十)--改变色彩空间

2022-12-07 10:13:59 浏览数 (1)

翻译及二次校对:cvtutorials.com

目标

  • • 在本教程中,你将学习如何将图像从一个色彩空间转换为另一个色彩空间,如BGR ↔ 灰色,BGR ↔ HSV,等等。
  • • 此外,我们将创建一个应用程序,提取视频中的彩色物体。
  • • 你将学习以下函数:cv.cvtColor(),cv.inRange(),等等。

改变色彩空间

在OpenCV中,有超过150种色彩空间转换方法。但我们只研究两种最广泛使用的方法:BGR ↔ Gray和BGR ↔ HSV。

对于颜色转换,我们使用函数cv.cvtColor(input_image, flag),其中flag决定了转换的类型。

对于BGR → GRAY的转换,我们使用标志cv.COLOR_BGR2GRAY。类似地,对于BGR→HSV的转换,我们使用标志cv.COLOR_BGR2HSV。要获得其他标志,只需在你的Python终端运行以下命令。

代码语言:javascript复制
>>> import cv2 as cv
>>> flags = [i for i in dir(cv) if i.startswith('COLOR_')]
>>> print(flags )

备注:对于HSV,色调范围是[0,179],饱和度范围是[0,255],值范围是[0,255]。不同的软件使用不同的范围。因此,如果你将OpenCV的值与它们进行比较,你需要将这些范围归一化。

对象跟踪

现在我们知道了如何将BGR图像转换为HSV,我们可以用它来提取一个彩色物体。在HSV中,要比在BGR色彩空间中更容易表示一种颜色。在我们的应用中,我们将尝试提取一个蓝色的物体。因此,方法是这样的:

  1. 1. 取出视频的每一帧
  2. 2. 从BGR色彩空间转换为HSV色彩空间
  3. 3. 对HSV图像中的蓝色范围进行阈值处理
  4. 4. 现在单独提取蓝色物体,我们可以在该图像上做任何我们想做的事情

下面是代码,其中有详细的注释:

代码语言:javascript复制
import cv2 as cv
import numpy as np
cap = cv.VideoCapture(0)
while(1):
    # Take each frame
    _, frame = cap.read()
    # Convert BGR to HSV
    hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
    # define range of blue color in HSV
    lower_blue = np.array([110,50,50])
    upper_blue = np.array([130,255,255])
    # Threshold the HSV image to get only blue colors
    mask = cv.inRange(hsv, lower_blue, upper_blue)
    # Bitwise-AND mask and original image
    res = cv.bitwise_and(frame,frame, mask= mask)
    cv.imshow('frame',frame)
    cv.imshow('mask',mask)
    cv.imshow('res',res)
    k = cv.waitKey(5) & 0xFF
    if k == 27:
        break
cv.destroyAllWindows()

下面的图片显示了对蓝色物体的追踪:

注意事项:图像中存在一些噪音。我们将在后面的章节中看到如何消除它。这是物体追踪中最简单的方法。一旦你学会了轮廓线的功能,你就可以做很多事情,比如找到物体的中心点,用它来追踪物体,只需在相机前移动手就可以画图,以及其他有趣的事情。

如何找到HSV值来追踪?

这是在stackoverflow.com上发现的一个常见的问题。它非常简单,你可以使用同一个函数,cv.cvtColor()。你不需要传递图像,而只需要传递你想要的BGR值。例如,要找到绿色的HSV值,在Python终端尝试以下命令。

代码语言:javascript复制
>>> green = np.uint8([[[0,255,0 ]]])
>>> hsv_green = cv.cvtColor(green,cv.COLOR_BGR2HSV)
>>> print( hsv_green )
[[[ 60 255 255]]]

现在你把[H-10,100,100]和[H 10,255,255]分别作为下限和上限。除了这种方法,你可以使用任何图像编辑工具,如GIMP或任何在线转换器来找到这些值,但不要忘记调整HSV范围。

练习

  • • 尝试找到一种方法来提取一个以上的彩色物体,例如,同时提取红色、蓝色和绿色物体。

0 人点赞