翻译及二次校对:cvtutorials.com
目标
在本章中,我们将学习:
- • 寻找图像梯度和边缘等
- • 我们将看到以下函数:cv.Sobel()、cv.Scharr()、cv.Laplacian()等。
理论
OpenCV提供了三种类型的梯度滤波器或高通滤波器,Sobel, Scharr和Laplacian。
- 1. Sobel和Scharr梯度
Sobel运算符是一种高斯平滑加微分的联合运算,所以它对噪声的抵抗力更强。你可以指定要取的导数的方向,垂直或水平(分别通过参数yorder和xorder)。你还可以通过参数ksize指定核的大小。如果ksize = -1,则使用3x3 Scharr滤波器,它比3x3 Sobel滤波器的结果更好。请看文档中核的用法。
- 1. 拉普拉斯导数
它计算由以下关系式给出的图像拉普拉斯系数。结果如下:
其中每个导数都是用Sobel导数找到的。如果ksize=1,则使用以下核进行过滤。
代码
下面的代码在一个图中显示了所有的运算符。所有核都是5x5大小。输出图像的深度是通过-1来获得np.uint8类型的结果。
代码语言:javascript复制import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('dave.jpg',0)
laplacian = cv.Laplacian(img,cv.CV_64F)
sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
sobely = cv.Sobel(img,cv.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
结果如下:
一个重要的问题!
在我们最后一个例子中,输出数据类型是cv.CV_8U或np.uint8。但是这里面有一个小问题。黑到白的过渡被认为是正斜率(它有一个正值),而白到黑的过渡被认为是负斜率(它有负值)。所以当你把数据转换成np.uint8时,所有的负斜率都变成了0。简单地说,你会丢失这个边缘。
如果你想检测两个边缘,更好的选择是将输出数据类型保持为更高的形式,如cv.CV_16S,cv.CV_64F等,取其绝对值,然后转换回cv.CV_8U。下面的代码演示了水平Sobel滤波器的这个过程和结果的差异。
代码语言:javascript复制import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('box.png',0)
# Output dtype = cv.CV_8U
sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5)
# Output dtype = cv.CV_64F. Then take its absolute and convert to cv.CV_8U
sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.show()
结果如下: