AlphaZero黑箱终于被打开!登顶5年后,人类揭开它学会下棋的奥秘

2022-12-09 08:23:25 浏览数 (1)

詹士 发自 凹非寺 量子位 | 公众号 QbitAI

AI如何学到知识的?科学家敲开了它的脑壳看了看。

这两天,DeepMind及谷歌大脑一篇文章被《美国国家科学院院刊》(PNAS)收录,其内容正是以5年前发布的AlphaZero为例,研究神经网络如何获取并理解国际象棋知识。

在内容中,研究者重点关注了「神经网络是如何学习的」「知识又如何被量化表示」等问题。

有意思的是,他们发现:

在没有人类对弈指导下,AlphaZero仍形成了一套类似专业棋手才懂的概念体系。研究者还进一步探寻了这些概念何时何处形成。 此外,他们还对比了AlphaZero与人类开局棋风的不同。

有网友感慨,这是个影响深远的工作:

也有人感慨,AlphaZero能计算任何人类行为特征了?!

欲知更多观察结果,往下看。

掀起了神经网络的头盖骨

AlphaZero于2017年由DeepMind发布并一鸣惊人。

这是一种神经网络驱动的强化学习器,专精于棋类,内部包含了残差网络(ResNet)骨干网及分离的策略及价值heads。

其输出函数可表示如下,z为国际象棋排布情况:

为研究AlphaZero如何「学习」的,研究者构建了一个人类理解国际象棋的函数c(z0)。其中,z0为一个象棋特定排布概念,c(z0)以专业国际象棋引擎Stockfish 8评估分数作为参考。

再从AlphaZero角度,设一个广义线性函数g(zd),作为在不同层取值的探针。训练设定下,g(zd)将不断趋近

0 人点赞