ECCV2022|自校准高动态范围辐射场!论文速递2022.10.4!

2022-12-11 12:46:12 浏览数 (1)

整理:AI算法与图像处理

CVPR2022论文和代码整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo

ECCV2022论文和代码整理:https://github.com/DWCTOD/ECCV2022-Papers-with-Code-Demo

最新成果demo展示:

标题:

HDR-Plenoxels: Self-Calibrating High Dynamic Range Radiance Fields

论文:https://arxiv.org/abs/2208.06787

代码:https://github.com/postech-ami/HDR-Plenoxels

摘要:

提出了高动态范围辐射(HDR)场(HDR Plenoxels),它可以学习3D HDR辐射场的全光函数、几何信息以及2D低动态范围(LDR)图像中固有的不同相机设置。我们基于体素的体绘制管道仅使用端到端的方式从不同相机设置中获取的多视图LDR图像重建HDR辐射场,并且具有快速收敛速度。为了处理现实场景中的各种相机,我们引入了一个色调映射模块,该模块对数码相机成像管道(ISP)进行建模,并解开辐射设置的纠缠。我们的色调映射模块允许我们通过控制每个新奇视图的辐射设置进行渲染。最后,我们构建了一个具有不同相机条件的多视图数据集,它符合我们的问题设置。我们的实验表明,HDR Plenoxels可以从带有各种相机的LDR图像中表达细节和高质量的HDR新颖视图。


最新论文整理

ECCV2022

Updated on : 4 Oct 2022
total number : 2

From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution

  • 论文/Paper: http://arxiv.org/pdf/2210.00752
  • 代码/Code: https://github.com/csxmli2016/redegnet

Long-Tailed Class Incremental Learning

  • 论文/Paper: http://arxiv.org/pdf/2210.00266
  • 代码/Code: https://github.com/xialeiliu/long-tailed-cil

CVPR2022

NeurIPS

Updated on : 4 Oct 2022
total number : 10

Expediting Large-Scale Vision Transformer for Dense Prediction without Fine-tuning

  • 论文/Paper: http://arxiv.org/pdf/2210.01035
  • 代码/Code: None

Perceptual Attacks of No-Reference Image Quality Models with Human-in-the-Loop

  • 论文/Paper: http://arxiv.org/pdf/2210.00933
  • 代码/Code: None

Learning Equivariant Segmentation with Instance-Unique Querying

  • 论文/Paper: http://arxiv.org/pdf/2210.00911
  • 代码/Code: https://github.com/jamesliang819/instance_unique_querying

Heatmap Distribution Matching for Human Pose Estimation

  • 论文/Paper: http://arxiv.org/pdf/2210.00740
  • 代码/Code: None

Unsupervised Multi-View Object Segmentation Using Radiance Field Propagation

  • 论文/Paper: http://arxiv.org/pdf/2210.00489
  • 代码/Code: None

Alignment-guided Temporal Attention for Video Action Recognition

  • 论文/Paper: http://arxiv.org/pdf/2210.00132
  • 代码/Code: None

An In-depth Study of Stochastic Backpropagation

  • 论文/Paper: http://arxiv.org/pdf/2210.00129
  • 代码/Code: None

Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset Copyright Protection

  • 论文/Paper: http://arxiv.org/pdf/2210.00875
  • 代码/Code: https://github.com/thuyimingli/untargeted_backdoor_watermark

Compositional Generalization in Unsupervised Compositional Representation Learning: A Study on Disentanglement and Emergent Language

  • 论文/Paper: http://arxiv.org/pdf/2210.00482
  • 代码/Code: None

MaskTune: Mitigating Spurious Correlations by Forcing to Explore

  • 论文/Paper: http://arxiv.org/pdf/2210.00055
  • 代码/Code: https://github.com/aliasgharkhani/masktune

0 人点赞