整理:AI算法与图像处理
CVPR2022论文和代码整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo
ECCV2022论文和代码整理:https://github.com/DWCTOD/ECCV2022-Papers-with-Code-Demo
最新成果demo展示:
标题:CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation
代码:https://github.com/huawei-noah/noah-research/tree/master/CLIFF
论文:https://arxiv.org/abs/2208.00571
自顶向下的方法在3D人体姿势和形状估计领域占据主导地位,因为它们与人体检测分离,允许研究人员专注于核心问题。然而,裁剪是它们的第一步,从一开始就丢弃了位置信息,这使得它们无法在原始相机坐标系中准确预测全局旋转。为了解决这个问题,我们建议在这个任务中携带全帧位置信息(CLIFF)。具体来说,我们通过将裁剪的图像特征与其边界框信息连接起来,向CLIFF提供更全面的特征。我们在更宽的全帧视野下计算2D重投影损失,采用与在图像中投影的人相似的投影过程。CLIFF由全球位置感知信息提供并监督,它直接预测全球旋转以及更精确的关节姿势。此外,我们提出了一种基于CLIFF的伪地面真值注释器,它为野外二维数据集提供高质量的三维注释,并为基于回归的方法提供关键的全面监督。对流行基准测试的大量实验表明,CLIFF的表现明显优于现有技术,并在AGORA排行榜上排名第一(SMPL算法跟踪)。
最新论文整理
ECCV2022
Updated on : 19 Oct 2022
total number : 5
ARAH: Animatable Volume Rendering of Articulated Human SDFs
- 论文/Paper: http://arxiv.org/pdf/2210.10036
- 代码/Code: None
Towards Efficient and Effective Self-Supervised Learning of Visual Representations
- 论文/Paper: http://arxiv.org/pdf/2210.09866
- 代码/Code: https://github.com/val-iisc/effssl
On-the-go Reflectance Transformation Imaging with Ordinary Smartphones
- 论文/Paper: http://arxiv.org/pdf/2210.09821
- 代码/Code: None
Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection
- 论文/Paper: http://arxiv.org/pdf/2210.09615
- 代码/Code: None
Scaling Adversarial Training to Large Perturbation Bounds
- 论文/Paper: http://arxiv.org/pdf/2210.09852
- 代码/Code: None
CVPR2022
NeurIPS
Updated on : 19 Oct 2022
total number : 4
How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios
- 论文/Paper: http://arxiv.org/pdf/2210.10039
- 代码/Code: https://github.com/hendrycks/emodiversity
Decoupling Features in Hierarchical Propagation for Video Object Segmentation
- 论文/Paper: http://arxiv.org/pdf/2210.09782
- 代码/Code: https://github.com/z-x-yang/AOT.
HUMANISE: Language-conditioned Human Motion Generation in 3D Scenes
- 论文/Paper: http://arxiv.org/pdf/2210.09729
- 代码/Code: None
Hierarchical Normalization for Robust Monocular Depth Estimation
- 论文/Paper: http://arxiv.org/pdf/2210.09670
- 代码/Code: None