整理:AI算法与图像处理
CVPR2022论文和代码整理:https://github.com/DWCTOD/CVPR2022-Papers-with-Code-Demo
ECCV2022论文和代码整理:https://github.com/DWCTOD/ECCV2022-Papers-with-Code-Demo
最新成果demo展示:
CAIR: Multi-Scale Color Attention Network for Instagram Filter Removal
论文:https://arxiv.org/abs/2208.14039
代码:https://github.com/HnV-Lab/CAIR
图像恢复是计算机视觉中一项重要而富有挑战性的任务。将过滤后的图像还原为其原始图像在各种计算机视觉任务中都很有用。我们使用非线性无激活函数网络(NAFNet)来实现快速和轻量级的模型,并添加了颜色注意力模块,该模块提取有用的颜色信息以提高准确性。我们提出了一种精确、快速、轻量级的网络,具有多尺度和颜色关注,用于Instagram滤镜移除(CAIR)。实验结果表明,在IFFI数据集上,所提出的CAIR在快速和轻量化方面优于现有的Instagram滤波器去除网络,大约快11倍,轻2.4倍,同时超过3.69 dB PSNR。CAIR可以成功地以高质量移除
最新论文整理
ECCV2022
ECCV 2022
Updated on : 14 Nov 2022
total number : 1
LiDAL: Inter-frame Uncertainty Based Active Learning for 3D LiDAR Semantic Segmentation
- 论文/Paper: http://arxiv.org/pdf/2211.05997
- 代码/Code: https://github.com/hzykent/lidal
CVPR2022
NeurIPS
Updated on : 14 Nov 2022
total number : 3
A Benchmark for Out of Distribution Detection in Point Cloud 3D Semantic Segmentation
- 论文/Paper: http://arxiv.org/pdf/2211.06241
- 代码/Code: None
Disentangled Uncertainty and Out of Distribution Detection in Medical Generative Models
- 论文/Paper: http://arxiv.org/pdf/2211.06250
- 代码/Code: None
From Competition to Collaboration: Making Toy Datasets on Kaggle Clinically Useful for Chest X-Ray Diagnosis Using Federated Learning
- 论文/Paper: http://arxiv.org/pdf/2211.06212
- 代码/Code: None