工厂人员违规行为识别 yolov5框架

2022-12-18 16:34:41 浏览数 (1)

工厂人员违规行为识别借助yolov5深度学习框架技术,YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使得其速度与精度都得到了极大的性能提升,具体包括:输入端的Mosaic数据增强、自适应锚框计算、自适应图片缩放操作;基准端的Focus结构与CSP结构;Neck端的SPP与FPN PAN结构;输出端的损失函数GIOU_Loss以及预测框筛选的DIOU_nms。

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN PAN结构,相当于目标检测网络的颈部,也是非常关键的。

FPN是自顶向下,将高层的强语义特征传递下来,对整个金字塔进行增强,不过只增强了语义信息,对定位信息没有传递。PAN就是针对这一点,在FPN的后面添加一个自底向上的金字塔,对FPN补充,将低层的强定位特征传递上去,又被称之为“双塔战术”。

0 人点赞