大家好,又见面了,我是你们的朋友全栈君。
scrapy框架简介和基础应用
什么是Scrapy?
- Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍。所谓的框架就是一个已经被集成了各种功能(高性能异步下载,队列,分布式,解析,持久化等)的具有很强通用性的项目模板。对于框架的学习,重点是要学习其框架的特性、各个功能的用法即可。
安装
Linux:
代码语言:javascript复制 pip3 install scrapy
Windows:
代码语言:javascript复制注意: 按顺序依次全部安装
a. pip3 install wheel b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl d. pip3 install pywin32 e. pip3 install scrapy
代码语言:javascript复制在Pycharm中运行Scrapy爬虫项目的基本操作
目标在Win7上建立一个Scrapy爬虫项目,以及对其进行基本操作。运行环境:电脑上已经安装了python(环境变量path已经设置好),
以及scrapy模块,IDE为Pycharm 。操作如下:
一、建立Scrapy模板。进入自己的工作目录,shift 鼠标右键进入命令行模式,在命令行模式下,
输入scrapy startproject 项目名 ,如下:
看到以上的代码说明项目已经在工作目录中建好了。
二、在Pycharm中scrapy的导入。在Pycharm中打开工作目录中的TestDemo,点击File-> Settings->Project: TestDemo->Project Interpreter。
法一: 如图,
选择红框中右边的下拉菜单点击Show All, 如图:
点击右上角加号,如图:
在红色框体内找到电脑里已经安装的python,比如我的是:
C:UsersAdministratorAppDataLocalProgramsPythonPython36-32python.exe , 导入即可。
之后,pycharm会自动导入你已经在电脑上安装的scrapy等模块。如图,即红色框体中显示的。
法二:一个不那么麻烦的方法。如图:
点击红色框体,在弹出的框体内另安装一个scrapy, 如图:
需要安装的模块,如图:
模块自下而上进行安装,其中可能出现twisted包不能成功安装,出现
Failed building wheel for Twisted
Microsoft Visual C 14.0 is required...
的现象,那就搜一解决方案,这里不多说了。
三、Pycharm中scrapy的运行设置。
法一:Scrapy爬虫的运行需要到命令行下运行,在pychram中左下角有个Terminal,点开就可以在Pycharm下进入命令行,默认
是在项目目录下的,要运行项目,需要进入下一层目录,使用cd TestDemo 进入下一层目录,然后用scrapy crawl 爬虫名 , 即可运行爬虫。
如图:
法二:在TestDemoSpider目录和scrapy.cfg同级目录下面,新建一个entrypoint.py文件,如图:
其中只需把红色框体内的内容改成相应的爬虫的名字就可以在不同的爬虫项目中使用了,直接运行该文件就能使得Scrapy爬虫运行
Tips:在创建爬虫时使用模板更加方便一些,如:
scrapy genspider [-t template] <name> <domain> 即:scrapy genspider testDemoSpider baidu.com
在Pycharm中运行Scrapy爬虫项目的基本操作
代码语言:javascript复制
基本用法
1.创建项目:scrapy startproject 项目名称
项目结构:
代码语言:javascript复制project_name/
scrapy.cfg:
project_name/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
scrapy.cfg 项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
items.py 设置数据存储模板,用于结构化数据,如:Django的Model
pipelines 数据持久化处理
settings.py 配置文件,如:递归的层数、并发数,延迟下载等
spiders 爬虫目录,如:创建文件,编写爬虫解析规则
2.创建爬虫应用程序:
cd project_name(进入项目目录)
scrapy genspider 应用名称 爬取网页的起始url (例如:scrapy genspider qiubai www.qiushibaike.com)
3.编写爬虫文件:
在步骤2执行完毕后,会在项目的spiders中生成一个应用名的py爬虫文件,文件源码如下
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy class QiubaiSpider(scrapy.Spider): name = 'qiubai' #应用名称 #允许爬取的域名(如果遇到非该域名的url则爬取不到数据) allowed_domains = ['https://www.qiushibaike.com/'] #起始爬取的url start_urls = ['https://www.qiushibaike.com/'] #访问起始URL并获取结果后的回调函数,该函数的response参数就是向起始的url发送请求后,获取的响应对象.该函数返回值必须为可迭代对象或者NUll def parse(self, response): print(response.text) #获取字符串类型的响应内容 print(response.body)#获取字节类型的相应内容
4.设置修改settings.py配置文件相关配置:
代码语言:javascript复制修改内容及其结果如下:
19行:USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36' #伪装请求载体身份 22行:ROBOTSTXT_OBEY = False #可以忽略或者不遵守robots协议
5.执行爬虫程序:scrapy crawl 应用名称
小试牛刀:将糗百首页中段子的内容和标题进行爬取
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy class QiubaiSpider(scrapy.Spider): name = 'qiubai' allowed_domains = ['https://www.qiushibaike.com/'] start_urls = ['https://www.qiushibaike.com/'] def parse(self, response): #xpath为response中的方法,可以将xpath表达式直接作用于该函数中 odiv = response.xpath('//div[@id="content-left"]/div') content_list = [] #用于存储解析到的数据 for div in odiv: #xpath函数返回的为列表,列表中存放的数据为Selector类型的数据。我们解析到的内容被封装在了Selector对象中,需要调用extract()函数将解析的内容从Selecor中取出。 author = div.xpath('.//div[@class="author clearfix"]/a/h2/text()')[0].extract() content=div.xpath('.//div[@class="content"]/span/text()')[0].extract() #将解析到的内容封装到字典中 dic={ '作者':author, '内容':content } #将数据存储到content_list这个列表中 content_list.append(dic) return content_list
执行爬虫程序:
代码语言:javascript复制scrapy crawl 爬虫名称 :该种执行形式会显示执行的日志信息
scrapy crawl 爬虫名称 --nolog:该种执行形式不会显示执行的日志信息
scrapy框架持久化存储
1. 基于终端指令的持久化存储
保证爬虫文件的parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的形式写入指定格式的文件中进行持久化操作。 执行输出指定格式进行存储:将爬取到的数据写入不同格式的文件中进行存储
代码语言:javascript复制scrapy crawl 爬虫名称 -o xxx.json scrapy crawl 爬虫名称 -o xxx.xml scrapy crawl 爬虫名称 -o xxx.csv
2. 基于管道的持久化存储
scrapy框架中已经为我们专门集成好了高效、便捷的持久化操作功能,我们直接使用即可。要想使用scrapy的持久化操作功能,我们首先来认识如下两个文件:
- items.py:数据结构模板文件。定义数据属性。
- pipelines.py:管道文件。接收数据(items),进行持久化操作。
持久化流程:
1.爬虫文件爬取到数据后,需要将数据封装到items对象中。
3. 将糗事百科首页中的段子和作者数据爬取下来,然后进行持久化存储
– 爬虫文件:qiubaiDemo.py
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from secondblood.items import SecondbloodItem class QiubaidemoSpider(scrapy.Spider): name = 'qiubaiDemo' allowed_domains = ['www.qiushibaike.com'] start_urls = ['http://www.qiushibaike.com/'] def parse(self, response): odiv = response.xpath('//div[@id="content-left"]/div') for div in odiv: # xpath函数返回的为列表,列表中存放的数据为Selector类型的数据。我们解析到的内容被封装在了Selector对象中,需要调用extract()函数将解析的内容从Selecor中取出。 author = div.xpath('.//div[@class="author clearfix"]//h2/text()').extract_first() author = author.strip('n')#过滤空行 content = div.xpath('.//div[@class="content"]/span/text()').extract_first() content = content.strip('n')#过滤空行 #将解析到的数据封装至items对象中 item = SecondbloodItem() item['author'] = author item['content'] = content yield item#提交item到管道文件(pipelines.py)
– items文件:items.py
代码语言:javascript复制import scrapy class SecondbloodItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() author = scrapy.Field() #存储作者 content = scrapy.Field() #存储段子内容
– 管道文件:pipelines.py
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class SecondbloodPipeline(object): #构造方法 def __init__(self): self.fp = None #定义一个文件描述符属性 #下列都是在重写父类的方法: #开始爬虫时,执行一次 def open_spider(self,spider): print('爬虫开始') self.fp = open('./data.txt', 'w') #因为该方法会被执行调用多次,所以文件的开启和关闭操作写在了另外两个只会各自执行一次的方法中。 def process_item(self, item, spider): #将爬虫程序提交的item进行持久化存储 self.fp.write(item['author'] ':' item['content'] 'n') return item #结束爬虫时,执行一次 def close_spider(self,spider): self.fp.close() print('爬虫结束')
– 配置文件:settings.py
代码语言:javascript复制#开启管道 ITEM_PIPELINES = { 'secondblood.pipelines.SecondbloodPipeline': 300, #300表示为优先级,值越小优先级越高 }
基于mysql的管道存储
– pipelines.py文件
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html #导入数据库的类 import pymysql class QiubaiproPipelineByMysql(object): conn = None #mysql的连接对象声明 cursor = None#mysql游标对象声明 def open_spider(self,spider): print('开始爬虫') #链接数据库 self.conn = pymysql.Connect(host='127.0.0.1',port=3306,user='root',password='123456',db='qiubai') #编写向数据库中存储数据的相关代码 def process_item(self, item, spider): #1.链接数据库 #2.执行sql语句 sql = 'insert into qiubai values("%s","%s")'%(item['author'],item['content']) self.cursor = self.conn.cursor() #执行事务 try: self.cursor.execute(sql) self.conn.commit() except Exception as e: print(e) self.conn.rollback() return item def close_spider(self,spider): print('爬虫结束') self.cursor.close() self.conn.close()
– settings.py
代码语言:javascript复制ITEM_PIPELINES = {
'qiubaiPro.pipelines.QiubaiproPipelineByMysql': 300,
}
基于redis的管道存储
– pipelines.py文件
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import redis class QiubaiproPipelineByRedis(object): conn = None def open_spider(self,spider): print('开始爬虫') #创建链接对象 self.conn = redis.Redis(host='127.0.0.1',port=6379) def process_item(self, item, spider): dict = { 'author':item['author'], 'content':item['content'] } #写入redis中 self.conn.lpush('data', dict) return item
– pipelines.py文件
代码语言:javascript复制ITEM_PIPELINES = {
'qiubaiPro.pipelines.QiubaiproPipelineByRedis': 300,
}
如果最终需要将爬取到的数据值一份存储到磁盘文件,一份存储到数据库中,则应该如何操作scrapy?
在settings.py开启管道操作代码为:
代码语言:javascript复制 #下列结构为字典,字典中的键值表示的是即将被启用执行的管道文件和其执行的优先级。 ITEM_PIPELINES = { 'doublekill.pipelines.DoublekillPipeline': 300, 'doublekill.pipelines.DoublekillPipeline_db': 200, } #上述代码中,字典中的两组键值分别表示会执行管道文件中对应的两个管道类中的process_item方法,实现两种不同形式的持久化操作。
scrapy中selenium的应用
1.案例分析:
代码语言:javascript复制- 需求:爬取网易新闻的国内板块下的新闻数据 - 需求分析:当点击国内超链进入国内对应的页面时,会发现当前页面展示的新闻数据是被动态加载出来的,如果直接通过程序对url进行请求,是获取不到动态加载出的新闻数据的。则就需要我们使用selenium实例化一个浏览器对象,在该对象中进行url的请求,获取动态加载的新闻数据。
2.selenium在scrapy中使用的原理分析:
当引擎将国内板块url对应的请求提交给下载器后,下载器进行网页数据的下载,然后将下载到的页面数据,封装到response中,提交给引擎,引擎将response在转交给Spiders。Spiders接受到的response对象中存储的页面数据里是没有动态加载的新闻数据的。要想获取动态加载的新闻数据,则需要在下载中间件中对下载器提交给引擎的response响应对象进行拦截,切对其内部存储的页面数据进行篡改,修改成携带了动态加载出的新闻数据,然后将被篡改的response对象最终交给Spiders进行解析操作。
3.selenium在scrapy中的使用流程:
- 重写爬虫文件的构造方法,在该方法中使用selenium实例化一个浏览器对象(因为浏览器对象只需要被实例化一次)
- 重写爬虫文件的closed(self,spider)方法,在其内部关闭浏览器对象。该方法是在爬虫结束时被调用
- 重写下载中间件的process_response方法,让该方法对响应对象进行拦截,并篡改response中存储的页面数据
- 在配置文件中开启下载中间件
4.代码展示:
– 中间件文件:
代码语言:javascript复制from scrapy.http import HtmlResponse #参数介绍: #拦截到响应对象(下载器传递给Spider的响应对象) #request:响应对象对应的请求对象 #response:拦截到的响应对象 #spider:爬虫文件中对应的爬虫类的实例 def process_response(self, request, response, spider): #响应对象中存储页面数据的篡改 if request.url in['http://news.163.com/domestic/','http://news.163.com/world/','http://news.163.com/air/','http://war.163.com/']: spider.bro.get(url=request.url) js = 'window.scrollTo(0,document.body.scrollHeight)' spider.bro.execute_script(js) time.sleep(2) #一定要给与浏览器一定的缓冲加载数据的时间 #页面数据就是包含了动态加载出来的新闻数据对应的页面数据 page_text = spider.bro.page_source #篡改响应对象 return HtmlResponse(url=spider.bro.current_url,body=page_text,encoding='utf-8',request=request) else: return response
– 配置文件:
代码语言:javascript复制DOWNLOADER_MIDDLEWARES = {
'wangyiPro.middlewares.WangyiproDownloaderMiddleware': 543,
}
scrapy框架之递归解析和post请求
递归爬取解析多页页面数据
- 需求:将糗事百科所有页码的作者和段子内容数据进行爬取切持久化存储
- 需求分析:每一个页面对应一个url,则scrapy工程需要对每一个页码对应的url依次发起请求,然后通过对应的解析方法进行作者和段子内容的解析。
实现方案:
1.将每一个页码对应的url存放到爬虫文件的起始url列表(start_urls)中。(不推荐)
2.使用Request方法手动发起请求。(推荐)
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from qiushibaike.items import QiushibaikeItem # scrapy.http import Request class QiushiSpider(scrapy.Spider): name = 'qiushi' allowed_domains = ['www.qiushibaike.com'] start_urls = ['https://www.qiushibaike.com/text/'] #爬取多页 pageNum = 1 #起始页码 url = 'https://www.qiushibaike.com/text/page/%s/' #每页的url def parse(self, response): div_list=response.xpath('//*[@id="content-left"]/div') for div in div_list: #//*[@id="qiushi_tag_120996995"]/div[1]/a[2]/h2 author=div.xpath('.//div[@class="author clearfix"]//h2/text()').extract_first() author=author.strip('n') content=div.xpath('.//div[@class="content"]/span/text()').extract_first() content=content.strip('n') item=QiushibaikeItem() item['author']=author item['content']=content yield item #提交item到管道进行持久化 #爬取所有页码数据 if self.pageNum <= 13: #一共爬取13页(共13页) self.pageNum = 1 url = format(self.url % self.pageNum) #递归爬取数据:callback参数的值为回调函数(将url请求后,得到的相应数据继续进行parse解析),递归调用parse函数 yield scrapy.Request(url=url,callback=self.parse)
五大核心组件工作流程:
- 引擎(Scrapy) 用来处理整个系统的数据流处理, 触发事务(框架核心)
- 调度器(Scheduler) 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
- 下载器(Downloader) 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
- 爬虫(Spiders) 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
- 项目管道(Pipeline) 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
post请求发送
【注意】该方法默认的实现,是对起始的url发起get请求,如果想发起post请求,则需要子类重写该方法。
-方法: 重写start_requests方法,让其发起post请求:
代码语言:javascript复制def start_requests(self): #请求的url post_url = 'http://fanyi.baidu.com/sug' # post请求参数 formdata = { 'kw': 'wolf', } # 发送post请求 yield scrapy.FormRequest(url=post_url, formdata=formdata, callback=self.parse)
Python网络爬虫之Scrapy框架(CrawlSpider)
提问:如果想要通过爬虫程序去爬取”糗百“全站数据新闻数据的话,有几种实现方法?
方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法)。
方法二:基于CrawlSpider的自动爬取进行实现(更加简洁和高效)。
CrawlSpider使用
1.创建scrapy工程:scrapy startproject projectName
2.创建爬虫文件:scrapy genspider -t crawl spiderName www.xxx.com
–此指令对比以前的指令多了 “-t crawl”,表示创建的爬虫文件是基于CrawlSpider这个类的,而不再是Spider这个基类。
3.观察生成的爬虫文件
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class ChoutidemoSpider(CrawlSpider): name = 'choutiDemo' #allowed_domains = ['www.chouti.com'] start_urls = ['http://www.chouti.com/'] rules = ( Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True), ) def parse_item(self, response): i = {} #i['domain_id'] = response.xpath('//input[@id="sid"]/@value').extract() #i['name'] = response.xpath('//div[@id="name"]').extract() #i['description'] = response.xpath('//div[@id="description"]').extract() return i - 2,3行:导入CrawlSpider相关模块 - 7行:表示该爬虫程序是基于CrawlSpider类的 - 12,13,14行:表示为提取Link规则 - 16行:解析方法
CrawlSpider类和Spider类的最大不同是CrawlSpider多了一个rules属性,其作用是定义”提取动作“。在rules中可以包含一个或多个Rule对象,在Rule对象中包含了LinkExtractor对象。
LinkExtractor:顾名思义,链接提取器。
代码语言:javascript复制 LinkExtractor(
allow=r'Items/',# 满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。 deny=xxx, # 满足正则表达式的则不会被提取。 restrict_xpaths=xxx, # 满足xpath表达式的值会被提取 restrict_css=xxx, # 满足css表达式的值会被提取 deny_domains=xxx, # 不会被提取的链接的domains。 ) - 作用:提取response中符合规则的链接。
Rule : 规则解析器。根据链接提取器中提取到的链接,根据指定规则提取解析器链接网页中的内容。
代码语言:javascript复制 Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True) - 参数介绍: 参数1:指定链接提取器 参数2:指定规则解析器解析数据的规则(回调函数) 参数3:是否将链接提取器继续作用到链接提取器提取出的链接网页中。当callback为None,参数3的默认值为true。
rules=( ):指定不同规则解析器。一个Rule对象表示一种提取规则。
CrawlSpider整体爬取流程:
代码语言:javascript复制 a)爬虫文件首先根据起始url,获取该url的网页内容
b)链接提取器会根据指定提取规则将步骤a中网页内容中的链接进行提取
c)规则解析器会根据指定解析规则将链接提取器中提取到的链接中的网页内容根据指定的规则进行解析 d)将解析数据封装到item中,然后提交给管道进行持久化存储
爬取糗事百科糗图板块的所有页码数据
代码语言:javascript复制 # -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class CrawldemoSpider(CrawlSpider): name = 'qiubai' #allowed_domains = ['www.qiushibaike.com'] start_urls = ['https://www.qiushibaike.comhttps://img.yuanmabao.com/zijie/pic/'] #连接提取器:会去起始url响应回来的页面中提取指定的url link = LinkExtractor(allow=r'https://img.yuanmabao.com/zijie/pic/page/d ?') #s=为随机数 link1 = LinkExtractor(allow=r'https://img.yuanmabao.com/zijie/pic/$')#爬取第一页 #rules元组中存放的是不同的规则解析器(封装好了某种解析规则) rules = ( #规则解析器:可以将连接提取器提取到的所有连接表示的页面进行指定规则(回调函数)的解析 Rule(link, callback='parse_item', follow=True), Rule(link1, callback='parse_item', follow=True), ) def parse_item(self, response): print(response)
爬虫文件
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from qiubaiBycrawl.items import QiubaibycrawlItem import re class QiubaitestSpider(CrawlSpider): name = 'qiubaiTest' #起始url start_urls = ['http://www.qiushibaike.com/'] #定义链接提取器,且指定其提取规则 page_link = LinkExtractor(allow=r'/8hr/page/d /') rules = ( #定义规则解析器,且指定解析规则通过callback回调函数 Rule(page_link, callback='parse_item', follow=True), ) #自定义规则解析器的解析规则函数 def parse_item(self, response): div_list = response.xpath('//div[@id="content-left"]/div') for div in div_list: #定义item item = QiubaibycrawlItem() #根据xpath表达式提取糗百中段子的作者 item['author'] = div.xpath('./div/a[2]/h2/text()').extract_first().strip('n') #根据xpath表达式提取糗百中段子的内容 item['content'] = div.xpath('.//div[@class="content"]/span/text()').extract_first().strip('n') yield item #将item提交至管道
item文件
代码语言:javascript复制# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class QiubaibycrawlItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() author = scrapy.Field() #作者 content = scrapy.Field() #内容
管道文件:
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class QiubaibycrawlPipeline(object): def __init__(self): self.fp = None def open_spider(self,spider): print('开始爬虫') self.fp = open('./data.txt','w') def process_item(self, item, spider): #将爬虫文件提交的item写入文件进行持久化存储 self.fp.write(item['author'] ':' item['content'] 'n') return item def close_spider(self,spider): print('结束爬虫') self.fp.close()
scrapy框架的日志等级和请求传参, 优化效率
Scrapy的日志等级
- 在使用scrapy crawl spiderFileName运行程序时,在终端里打印输出的就是scrapy的日志信息。
- 日志信息的种类:
ERROR : 一般错误
WARNING : 警告
INFO : 一般的信息
DEBUG : 调试信息
- 设置日志信息指定输出:
在settings.py配置文件中,加入
代码语言:javascript复制 LOG_LEVEL = ‘指定日志信息种类’即可。 LOG_FILE = 'log.txt'则表示将日志信息写入到指定文件中进行存储。
请求传参
- 在某些情况下,我们爬取的数据不在同一个页面中,例如,我们爬取一个电影网站,电影的名称,评分在一级页面,而要爬取的其他电影详情在其二级子页面中。这时我们就需要用到请求传参。
- 案例展示:爬取www.id97.com电影网,将一级页面中的电影名称,类型,评分一级二级页面中的上映时间,导演,片长进行爬取。
爬虫文件
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from moviePro.items import MovieproItem class MovieSpider(scrapy.Spider): name = 'movie' allowed_domains = ['www.id97.com'] start_urls = ['http://www.id97.com/'] def parse(self, response): div_list = response.xpath('//div[@class="col-xs-1-5 movie-item"]') for div in div_list: item = MovieproItem() item['name'] = div.xpath('.//h1/a/text()').extract_first() item['score'] = div.xpath('.//h1/em/text()').extract_first() #xpath(string(.))表示提取当前节点下所有子节点中的数据值(.)表示当前节点 item['kind'] = div.xpath('.//div[@class="otherinfo"]').xpath('string(.)').extract_first() item['detail_url'] = div.xpath('./div/a/@href').extract_first() #请求二级详情页面,解析二级页面中的相应内容,通过meta参数进行Request的数据传递 yield scrapy.Request(url=item['detail_url'],callback=self.parse_detail,meta={'item':item}) def parse_detail(self,response): #通过response获取item item = response.meta['item'] item['actor'] = response.xpath('//div[@class="row"]//table/tr[1]/a/text()').extract_first() item['time'] = response.xpath('//div[@class="row"]//table/tr[7]/td[2]/text()').extract_first() item['long'] = response.xpath('//div[@class="row"]//table/tr[8]/td[2]/text()').extract_first() #提交item到管道 yield item
items 文件:
代码语言:javascript复制# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class MovieproItem(scrapy.Item): # define the fields for your item here like: name = scrapy.Field() score = scrapy.Field() time = scrapy.Field() long = scrapy.Field() actor = scrapy.Field() kind = scrapy.Field() detail_url = scrapy.Field()
管道文件:
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import json class MovieproPipeline(object): def __init__(self): self.fp = open('data.txt','w') def process_item(self, item, spider): dic = dict(item) print(dic) json.dump(dic,self.fp,ensure_ascii=False) return item def close_spider(self,spider): self.fp.close()
如何提高scripy的爬取效率
- 增加并发: 默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。
- 降低日志级别: 在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’
- 禁止cookie: 如果不是真的需要cookie,则在scrapy爬取数据时可以进制cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False
- 禁止重试: 对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False
- 减少下载超时: 如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s
测试案例:爬取校花网校花图片 www.521609.com
爬虫文件
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from xiaohua.items import XiaohuaItem class XiahuaSpider(scrapy.Spider): name = 'xiaohua' allowed_domains = ['www.521609.com'] start_urls = ['http://www.521609.com/daxuemeinv/'] pageNum = 1 url = 'http://www.521609.com/daxuemeinv/list8%d.html' def parse(self, response): li_list = response.xpath('//div[@class="index_img list_center"]/ul/li') for li in li_list: school = li.xpath('./a/img/@alt').extract_first() img_url = li.xpath('./a/img/@src').extract_first() item = XiaohuaItem() item['school'] = school item['img_url'] = 'http://www.521609.com' img_url yield item if self.pageNum < 10: self.pageNum = 1 url = format(self.url % self.pageNum) #print(url) yield scrapy.Request(url=url,callback=self.parse)
items.py
代码语言:javascript复制# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class XiaohuaItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() school=scrapy.Field() img_url=scrapy.Field()
pipelines.py
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import json import os import urllib.request class XiaohuaPipeline(object): def __init__(self): self.fp = None def open_spider(self,spider): print('开始爬虫') self.fp = open('./xiaohua.txt','w') def download_img(self,item): url = item['img_url'] fileName = item['school'] '.jpg' if not os.path.exists('./xiaohualib'): os.mkdir('./xiaohualib') filepath = os.path.join('./xiaohualib',fileName) urllib.request.urlretrieve(url,filepath) print(fileName "下载成功") def process_item(self, item, spider): obj = dict(item) json_str = json.dumps(obj,ensure_ascii=False) self.fp.write(json_str 'n') #下载图片 self.download_img(item) return item def close_spider(self,spider): print('结束爬虫') self.fp.close()
配置文件
代码语言:javascript复制USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) CONCURRENT_REQUESTS = 100 COOKIES_ENABLED = False LOG_LEVEL = 'ERROR' RETRY_ENABLED = False DOWNLOAD_TIMEOUT = 3 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 DOWNLOAD_DELAY = 3
UA池和代理池
一. 下载代理池
下载中间件(Downloader Middlewares) 位于scrapy引擎和下载器之间的一层组件。
- 作用:
(1)引擎将请求传递给下载器过程中, 下载中间件可以对请求进行一系列处理。比如设置请求的 User-Agent,设置代理等
(2)在下载器完成将Response传递给引擎中,下载中间件可以对响应进行一系列处理。比如进行gzip解压等。
我们主要使用下载中间件处理请求,一般会对请求设置随机的User-Agent ,设置随机的代理。目的在于防止爬取网站的反爬虫策略。
UA池:User-Agent池
代理池
基于scrapy-redis两种形式的分布式爬虫
1.scrapy框架是否可以自己实现分布式?
代码语言:javascript复制 - 不可以。原因有二。
其一:因为多台机器上部署的scrapy会各自拥有各自的调度器,这样就使得多台机器无法分配start_urls列表中的url。(多台机器无法共享同一个调度器)
其二:多台机器爬取到的数据无法通过同一个管道对数据进行统一的数据持久出存储。(多台机器无法共享同一个管道)
2.基于scrapy-redis组件的分布式爬虫
代码语言:javascript复制 - scrapy-redis组件中为我们封装好了可以被多台机器共享的调度器和管道,我们可以直接使用并实现分布式数据爬取。
- 实现方式:
1.基于该组件的RedisSpider类
2.基于该组件的RedisCrawlSpider类
3.分布式实现流程:上述两种不同方式的分布式实现流程是统一的
增量式爬虫
当我们在浏览相关网页的时候会发现,某些网站定时会在原有网页数据的基础上更新一批数据,例如某电影网站会实时更新一批最近热门的电影。小说网站会根据作者创作的进度实时更新最新的章节数据等等。那么,类似的情景,当我们在爬虫的过程中遇到时,我们是不是需要定时更新程序以便能爬取到网站中最近更新的数据呢?
增量式爬虫
在发送请求之前判断这个URL是不是之前爬取过
在解析内容后判断这部分内容是不是之前爬取过
案例: 爬取4567tv网站中所有的电影详情数据
爬虫文件:
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from redis import Redis from incrementPro.items import IncrementproItem class MovieSpider(CrawlSpider): name = 'movie' # allowed_domains = ['www.xxx.com'] start_urls = ['http://www.4567tv.tv/frim/index7-11.html'] rules = ( Rule(LinkExtractor(allow=r'/frim/index7-d .html'), callback='parse_item', follow=True), ) #创建redis链接对象 conn = Redis(host='127.0.0.1',port=6379) def parse_item(self, response): li_list = response.xpath('//li[@class="p1 m1"]') for li in li_list: #获取详情页的url detail_url = 'http://www.4567tv.tv' li.xpath('./a/@href').extract_first() #将详情页的url存入redis的set中 ex = self.conn.sadd('urls',detail_url) if ex == 1: print('该url没有被爬取过,可以进行数据的爬取') yield scrapy.Request(url=detail_url,callback=self.parst_detail) else: print('数据还没有更新,暂无新数据可爬取!') #解析详情页中的电影名称和类型,进行持久化存储 def parst_detail(self,response): item = IncrementproItem() item['name'] = response.xpath('//dt[@class="name"]/text()').extract_first() item['kind'] = response.xpath('//div[@class="ct-c"]/dl/dt[4]//text()').extract() item['kind'] = ''.join(item['kind']) yield item
管道文件:
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html from redis import Redis class IncrementproPipeline(object): conn = None def open_spider(self,spider): self.conn = Redis(host='127.0.0.1',port=6379) def process_item(self, item, spider): dic = { 'name':item['name'], 'kind':item['kind'] } print(dic) self.conn.lpush('movieData',dic) return item
需求:爬取糗事百科中的段子和作者数据。
爬虫文件:
代码语言:javascript复制# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from incrementByDataPro.items import IncrementbydataproItem from redis import Redis import hashlib class QiubaiSpider(CrawlSpider): name = 'qiubai' # allowed_domains = ['www.xxx.com'] start_urls = ['https://www.qiushibaike.com/text/'] rules = ( Rule(LinkExtractor(allow=r'/text/page/d /'), callback='parse_item', follow=True), Rule(LinkExtractor(allow=r'/text/$'), callback='parse_item', follow=True), ) #创建redis链接对象 conn = Redis(host='127.0.0.1',port=6379) def parse_item(self, response): div_list = response.xpath('//div[@id="content-left"]/div') for div in div_list: item = IncrementbydataproItem() item['author'] = div.xpath('./div[1]/a[2]/h2/text() | ./div[1]/span[2]/h2/text()').extract_first() item['content'] = div.xpath('.//div[@class="content"]/span/text()').extract_first() #将解析到的数据值生成一个唯一的标识进行redis存储 source = item['author'] item['content'] source_id = hashlib.sha256(source.encode()).hexdigest() #将解析内容的唯一表示存储到redis的data_id中 ex = self.conn.sadd('data_id',source_id) if ex == 1: print('该条数据没有爬取过,可以爬取......') yield item else: print('该条数据已经爬取过了,不需要再次爬取了!!!')
管道文件:
代码语言:javascript复制# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html from redis import Redis class IncrementbydataproPipeline(object): conn = None def open_spider(self, spider): self.conn = Redis(host='127.0.0.1', port=6379) def process_item(self, item, spider): dic = { 'author': item['author'], 'content': item['content'] } # print(dic) self.conn.lpush('qiubaiData', dic) return item
– 爬虫文件中的属性和方法: – name:爬虫文件的唯一标识 – start_urls:该列表中的url会被自动的进行请求发送 – 自动请求发送: def start_requests(self): for url in self.start_urls: yield scrapy.Request(url,callback=self.parse) – 想要对start_urls列表中的url发起post请求? – 必须重写父类中的start_requests(self)
– 数据解析: – scrapy中封装的xpath的方式进行数据解析。 – scrapy中的xpath和etree中的xpath的区别是什么? – scrapy的xpath进行数据解析后返回的列表元素为Selector对象,然后必须通过 extract或者extract_first这两个方法将Selector对象中的对应数据取出 – 持久化存储: – 基于终端指令 – 只可以将parse方法的返回值进行本地文件的持久化存储 – scrapy crawl spiderName -o filePath – 基于管道 – 数据解析 – 对item的类进行相关属性的制定 – 解析的数据封装到item类型的对象中 – 将item提交给管道 – 在管道类的process_item(item)方法中进行item对象的接收且进行任意形式的持久化存储操作 – 在配置文件中开启管道
– 管道中需要注意的细节: – 配置文件中开启管道对应的配置是一个字典,字典中的键值表示的就是某一个管道 – 在管道对应的源文件中其实可以定义多个管道类。一个管道类对应的是一种形式的持久化存储 – 在process_item方法中的return item表示的是将item提交给下一个即将被执行的管道类 – 爬虫文件通过yield item只可以将item提交给第一个(优先级最高)被执行的管道 – 手动请求发送 – 五大核心组件
– 如果基于scrapy进行图片数据的爬取 – 在爬虫文件中只需要解析提取出图片地址,然后将地址提交给管道 – 配置文件中:IMAGES_STORE = ‘./imgsLib’ – 在管道文件中进行管道类的制定: – 1.from scrapy.pipelines.images import ImagesPipeline – 2.将管道类的父类修改成ImagesPipeline – 3.重写父类的三个方法:
– 如何提升scrapy爬取数据的效率:只需要将如下五个步骤配置在配置文件中即可 增加并发: 默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。
降低日志级别: 在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’
禁止cookie: 如果不是真的需要cookie,则在scrapy爬取数据时可以禁止cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False
禁止重试: 对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False
减少下载超时: 如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s
– 请求传参: – 实现深度爬取:爬取多个层级对应的页面数据 – 使用场景:爬取的数据没有在同一张页面中
– 在手动请求的时候传递item:yield scrapy.Request(url,callback,meta={‘item’:item}) – 将meta这个字典传递给callback – 在callback中接收meta:item = response.meta[‘item’]
– scrapy中的中间件的应用 – 爬虫中间件,下载中间件 – 下载中间件: – 作用:批量拦截请求和响应 – 拦截请求: – UA伪装:将所有的请求尽可能多的设定成不同的请求载体身份标识 – request.headers[‘User-Agent’] = ‘xxx’ – 代理操作:request.meta[‘proxy’] = ‘http://ip:port’ – 拦截响应:篡改响应数据或者直接替换响应对象
-需求: 爬取网易新闻的国内,国际,军事,航空,无人机这五个板块下对应的新闻标题和内容 – 分析: – 1.每一个板块对应页面中的新闻数据是动态加载出来的 – selenium在scrapy中的应用: – 实例化浏览器对象:写在爬虫类的构造方法中 – 关闭浏览器:爬虫类中的closed(self,spider)关闭浏览器 – 在中间件中执行浏览器自动化的操作
爬取网易新闻
创建scrapy startproject wangyiPro
cd .
scrapy genspider wangyi www.xxx.com
代码语言:javascript复制# -*- coding: utf-8 -*-
import scrapy
from selenium import webdriver
class WangyiSpider(scrapy.Spider):
name = 'wangyi'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://news.163.com']
five_model_urls = []
bro = webdriver.Chrome(executable_path=r'F:数据采集(爬虫)爬虫 数据工具包day04chromedriver.exe')
# 用来解析五个板块对应的url,然后对其进行手动请求发送
def parse(self, response):
model_index = [3, 4, 6, 7, 8]
li_list = response.xpath('//*[@id="index2016_wrap"]/div[1]/div[2]/div[2]/div[2]/div[2]/div/ul/li')
for index in model_index:
li = li_list[index]
# 获取了五个板块对应的url
model_url = li.xpath('./a/@href').extract_first()
self.five_model_urls.append(model_url)
# 对每一个板块的url进行手动i请求发送
yield scrapy.Request(model_url, callback=self.parse_model)
def parse_model(self,response):
div_list = response.xpath('/html/body/div[1]/div[3]/div[4]/div[1]/div/div/ul/li/div/div')
for div in div_list:
title = div.xpath('./div/div[1]/h3/a/text()').extract_first()
detail_url = div.xpath('./div/div[1]/h3/a/@href').extract_first()
from wangyiPro.items import WangyiproItem
item = WangyiproItem()
yield scrapy.Request(detail_url,callback=self.parse_new_content,meta={'item':item})
def parse_new_content(self,response):
# item = response.meta['item']
item = response.meta['item']
content = response.xpath('//*[@id="endText"]//text()').extract()
content = ''.join(content)
item['content'] = content
yield item
def closed(self,spider):
self.bro.quit()
wangyi.py
代码语言:javascript复制import scrapy
class WangyiproItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
title = scrapy.Field()
content = scrapy.Field()
items.py
代码语言:javascript复制from time import sleep
from scrapy import signals
from scrapy.http import HtmlResponse
class WangyiproSpiderMiddleware(object):
# Not all methods need to be defined. If a method is not defined,
# scrapy acts as if the spider middleware does not modify the
# passed objects.
@classmethod
def from_crawler(cls, crawler):
# This method is used by Scrapy to create your spiders.
s = cls()
crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
return s
def process_spider_input(self, response, spider):
# Called for each response that goes through the spider
# middleware and into the spider.
# Should return None or raise an exception.
return None
def process_spider_output(self, response, result, spider):
# Called with the results returned from the Spider, after
# it has processed the response.
# Must return an iterable of Request, dict or Item objects.
for i in result:
yield i
def process_spider_exception(self, response, exception, spider):
# Called when a spider or process_spider_input() method
# (from other spider middleware) raises an exception.
# Should return either None or an iterable of Request, dict
# or Item objects.
pass
def process_start_requests(self, start_requests, spider):
# Called with the start requests of the spider, and works
# similarly to the process_spider_output() method, except
# that it doesn’t have a response associated.
# Must return only requests (not items).
for r in start_requests:
yield r
def spider_opened(self, spider):
spider.logger.info('Spider opened: %s' % spider.name)
class WangyiproDownloaderMiddleware(object):
# Not all methods need to be defined. If a method is not defined,
# scrapy acts as if the downloader middleware does not modify the
# passed objects.
@classmethod
def from_crawler(cls, crawler):
# This method is used by Scrapy to create your spiders.
s = cls()
crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
return s
def process_request(self, request, spider):
# Called for each request that goes through the downloader
# middleware.
# Must either:
# - return None: continue processing this request
# - or return a Response object
# - or return a Request object
# - or raise IgnoreRequest: process_exception() methods of
# installed downloader middleware will be called
return None
def process_response(self, request, response, spider):
# Called with the response returned from the downloader.
# Must either;
# - return a Response object
# - return a Request object
# - or raise IgnoreRequest
bro = spider.bro
if request.url in spider.five_model_urls:
bro.get(request.url)
sleep(1)
page_text = bro.page_source
new_response = HtmlResponse(url=request.url, body=page_text, encoding='utf-8', request=request)
return new_response
return response
def process_exception(self, request, exception, spider):
# Called when a download handler or a process_request()
# (from other downloader middleware) raises an exception.
# Must either:
# - return None: continue processing this exception
# - return a Response object: stops process_exception() chain
# - return a Request object: stops process_exception() chain
pass
def spider_opened(self, spider):
spider.logger.info('Spider opened: %s' % spider.name)
middlewares
代码语言:javascript复制class WangyiproPipeline(object):
def process_item(self, item, spider):
print(item)
return item
pipelines
代码语言:javascript复制# -*- coding: utf-8 -*-
# Scrapy settings for wangyiPro project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# https://docs.scrapy.org/en/latest/topics/settings.html
# https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
BOT_NAME = 'wangyiPro'
SPIDER_MODULES = ['wangyiPro.spiders']
NEWSPIDER_MODULE = 'wangyiPro.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'wangyiPro ( http://www.yourdomain.com)'
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
LOG_LEVEL = "ERROR"
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32
# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16
# Disable cookies (enabled by default)
#COOKIES_ENABLED = False
# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False
# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
# 'Accept': 'text/html,application/xhtml xml,application/xml;q=0.9,*/*;q=0.8',
# 'Accept-Language': 'en',
#}
# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
# 'wangyiPro.middlewares.WangyiproSpiderMiddleware': 543,
#}
# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
'wangyiPro.middlewares.WangyiproDownloaderMiddleware': 543,
}
# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
# 'scrapy.extensions.telnet.TelnetConsole': None,
#}
# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
'wangyiPro.pipelines.WangyiproPipeline': 300,
}
# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False
# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
settings
– 基于CrawlSpider的全站数据爬取 – CrawlSpider就是爬虫类中Spider的一个子类 – 使用流程: – 创建一个基于CrawlSpider的一个爬虫文件:scrapy genspider -t crawl spiderName www.xxxx.com – 构造链接提取器和规则解析器 – 链接提取器: – 作用:可以根据指定的规则进行指定链接的提取 – 提取的规则:allow =‘正则表达式’ – 规则解析器: – 作用:获取连接提取器提取到的链接,然后对其进行请求发送,根据指定规则对请求到的页面 源码数据进行数据解析 – fllow=True:将链接提取器 继续作用到 连接提取器提取出的页码链接 所对应的页面中 – 注意:连接提取器和规则解析器也是一对一的关系 – 分布式 – 什么是分布式爬虫? – 基于多台电脑组建一个分布式机群,然后让机群中的每一台电脑执行同一组程序,然后让它们对同一个 网站的数据进行分布爬取 – 为要使用分布式爬虫? – 提升爬取数据的效率 – 如何实现分布式爬虫? – 基于scrapy redis的形式实现分布式 – scrapy结合这scrapy-redis组建实现的分布式 – 原生的scrapy框架是无法实现分布式? – 调度器无法被分布式机群共享 – 管道无法被共享 – scrapy-redis组件的作用: – 提供可以被共享的调度器和管道 – 环境安装: – redis – pip Install scrapy-redis – 编码流程: – 创建一个工程 – 创建一个爬虫文件:基于CrawlSpider的爬虫文件 – 修改当前的爬虫文件: – 导包:from scrapy_redis.spiders import RedisCrawlSpider – 将当前爬虫类的父类修改成RedisCrawlSpider – 将start_urls替换成redis_key = ‘xxx’#表示的是可被共享调度器中队列的名称 – 编写爬虫类爬取数据的操作 – 对settings进行配置: – 指定管道: #开启可以被共享的管道 ITEM_PIPELINES = { ‘scrapy_redis.pipelines.RedisPipeline’: 400 } – 指定调度器: # 增加了一个去重容器类的配置, 作用使用Redis的set集合来存储请求的指纹数据, 从而实现请求去重的持久化 DUPEFILTER_CLASS = “scrapy_redis.dupefilter.RFPDupeFilter” # 使用scrapy-redis组件自己的调度器 SCHEDULER = “scrapy_redis.scheduler.Scheduler” # 配置调度器是否要持久化, 也就是当爬虫结束了, 要不要清空Redis中请求队列和去重指纹的set。如果是True, 就表示要持久化存储, 就不清空数据, 否则清空数据 SCHEDULER_PERSIST = True – 指定redis的服务: REDIS_HOST = ‘redis服务的ip地址’ REDIS_PORT = 6379 – redis的配置文件进行配置:redis.windows.conf – 56行:#bind 127.0.0.1 – 75行:protected-mode no – 携带配置文件启动redis服务 – ./redis-server redis.windows.conf – 启动redis的客户端 – redis-cli – 执行当前的工程: – 进入到爬虫文件对应的目录中:scrapy runspider xxx.py – 向调度器队列中仍入一个起始的url: – 队列在哪里呢?答:队列在redis中 – lpush fbsQueue www.xxx.com
– 增量式爬虫 – 概念:监测网站数据更新的情况。 – 核心:去重!!! – 深度爬取类型的网站中需要对详情页的url进行记录和检测 – 记录:将爬取过的详情页的url进行记录保存 – url存储到redis的set中 – 检测:如果对某一个详情页的url发起请求之前先要取记录表中进行查看,该url是否存在,存在的话以为 着这个url已经被爬取过了。 – 非深度爬取类型的网站: – 名词:数据指纹 – 一组数据的唯一标识
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/155719.html原文链接:https://javaforall.cn