大家好,又见面了,我是你们的朋友全栈君。
一、ConcurrentHashMap跟HashMap,HashTable的对比
1. HashMap不是线程安全: 在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的
2. HashTable是线程安全的: HashTable和HashMap的实现原理几乎一样, 差别:1.HashTable不允许key和value为null; 2.HashTable是线程安全的。 HashTable线程安全的策略实现代价却比较大,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,见下图:
3. ConcurrentHashMap是线程安全的: JDK1.7版本: 容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这 样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的”分段锁”思想,见下图:
每一个segment都是一个HashEntry<K,V>[] table, table中的每一个元素本质上都是一个HashEntry的单向队列(原理和hashMap一样)。比如table[3]为首节点,table[3]->next为节点1,之后为节点2,依次类推。
代码语言:javascript复制public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
implements ConcurrentMap<K, V>, Serializable {
// 将整个hashmap分成几个小的map,每个segment都是一个锁;与hashtable相比,这么设计的目的是对于put, remove等操作,可以减少并发冲突,对
// 不属于同一个片段的节点可以并发操作,大大提高了性能
final Segment<K,V>[] segments;
// 本质上Segment类就是一个小的hashmap,里面table数组存储了各个节点的数据,继承了ReentrantLock, 可以作为互拆锁使用
static final class Segment<K,V> extends ReentrantLock implements Serializable {
transient volatile HashEntry<K,V>[] table;
transient int count;
}
// 基本节点,存储Key, Value值
static final class HashEntry<K,V> {
final int hash;
final K key;
volatile V value;
volatile HashEntry<K,V> next;
}
}
JDK1.8版本:做了2点修改,见下图:
- 取消segments字段,直接采用transient volatile HashEntry<K,V>[] table保存数据,采用table数组元素作为锁,从而实现了对每一行数据进行加锁,并发控制使用Synchronized和CAS来操作
- 将原先table数组+单向链表的数据结构,变更为table数组+单向链表+红黑树的结构.
在ConcurrentHashMap中通过一个Node<K,V>[]数组来保存添加到map中的键值对,而在同一个数组位置是通过链表和红黑树的形式来保存的。但是这个数组只有在第一次添加元素的时候才会初始化,否则只是初始化一个ConcurrentHashMap对象的话,只是设定了一个sizeCtl变量,这个变量用来判断对象的一些状态和是否需要扩容,后面会详细解释。
第一次添加元素的时候,默认初期长度为16,当往map中继续添加元素的时候,通过hash值跟数组长度取与来决定放在数组的哪个位置,如果出现放在同一个位置的时候,优先以链表的形式存放,在同一个位置的个数又达到了8个以上,如果数组的长度还小于64的时候,则会扩容数组。如果数组的长度大于等于64了的话,在会将该节点的链表转换成树。
通过扩容数组的方式来把这些节点给分散开。然后将这些元素复制到扩容后的新的数组中,同一个链表中的元素通过hash值的数组长度位来区分,是还是放在原来的位置还是放到扩容的长度的相同位置去 。在扩容完成之后,如果某个节点的是树,同时现在该节点的个数又小于等于6个了,则会将该树转为链表。
取元素的时候,相对来说比较简单,通过计算hash来确定该元素在数组的哪个位置,然后在通过遍历链表或树来判断key和key的hash,取出value值。
二、ConcurrentHashMap源码分析
– 基本属性:
代码语言:javascript复制// node数组最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16;
//数组可能最大值,需要与toArray()相关方法关联
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//并发级别,遗留下来的,为兼容以前的版本
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 负载因子
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别 记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
private static final int MIN_TRANSFER_STRIDE = 16;
private static int RESIZE_STAMP_BITS = 16;
// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// forwarding nodes的hash值
static final int MOVED = -1;
// 树根节点的hash值
static final int TREEBIN = -2;
// ReservationNode的hash值
static final int RESERVED = -3;
// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
//存放node的数组
transient volatile Node<K,V>[] table;
/*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义
*当为负数时:-1代表正在初始化,-N代表有N-1个线程正在 进行扩容
*当为0时:代表当时的table还没有被初始化
*当为正数时:表示初始化或者下一次进行扩容的大小
private transient volatile int sizeCtl;
基本属性定义了ConcurrentHashMap的一些边界以及操作时的一些控制
- ConcurrentHashMap存储结构
- Node
static class Node<K,V> implements Map.Entry<K,V> {
//链表的数据结构
final int hash; //key的hash值
final K key; //key
//val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序
volatile V val; //get操作全程不需要加锁是因为Node的成员val是用volatile修饰
volatile Node<K,V> next; //表示链表中的下一个节点,数组用volatile修饰主要是保证在数组扩容的时候保证可见性
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return val; }
public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
public final String toString(){ return key "=" val; }
//不允许更新value
public final V setValue(V value) {
throw new UnsupportedOperationException();
}
public final boolean equals(Object o) {
Object k, v, u; Map.Entry<?,?> e;
return ((o instanceof Map.Entry) &&
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
(v = e.getValue()) != null &&
(k == key || k.equals(key)) &&
(v == (u = val) || v.equals(u)));
}
//用于map中的get()方法,子类重写
Node<K,V> find(int h, Object k) {
Node<K,V> e = this;
if (k != null) {
do {
K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}
Node是ConcurrentHashMap存储结构的基本单元,继承于HashMap中的Entry,用于存储数据
- TreeNode
static final class TreeNode<K,V> extends Node<K,V> {
//树形结构的属性定义
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red; //标志红黑树的红节点
TreeNode(int hash, K key, V val, Node<K,V> next,
TreeNode<K,V> parent) {
super(hash, key, val, next);
this.parent = parent;
}
Node<K,V> find(int h, Object k) {
return findTreeNode(h, k, null);
}
//根据key查找 从根节点开始找出相应的TreeNode,
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
if (k != null) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk; TreeNode<K,V> q;
TreeNode<K,V> pl = p.left, pr = p.right;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.findTreeNode(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
}
return null;
}
}
TreeNode继承与Node,但是数据结构换成了二叉树结构,它是红黑树的数据的存储结构,用于红黑树中存储数据,当链表的节点数大于8时会转换成红黑树的结构,他就是通过TreeNode作为存储结构代替Node来转换成黑红树
- TreeBin
static final class TreeBin<K,V> extends Node<K,V> {
//指向TreeNode列表和根节点
TreeNode<K,V> root;
volatile TreeNode<K,V> first;
volatile Thread waiter;
volatile int lockState;
// 读写锁状态
static final int WRITER = 1; // 获取写锁的状态
static final int WAITER = 2; // 等待写锁的状态
static final int READER = 4; // 增加数据时读锁的状态
/**
* 初始化红黑树
*/
TreeBin(TreeNode<K,V> b) {
super(TREEBIN, null, null, null);
this.first = b;
TreeNode<K,V> r = null;
for (TreeNode<K,V> x = b, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (r == null) {
x.parent = null;
x.red = false;
r = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = r;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
r = balanceInsertion(r, x);
break;
}
}
}
}
this.root = r;
assert checkInvariants(root);
}
......
}
TreeBin从字面含义中可以理解为存储树形结构的容器,而树形结构就是指TreeNode,所以TreeBin就是封装TreeNode的容器,它提供转换黑红树的一些条件和锁的控制
- ConcurrentHashMap的put操作详解
public V put(K key, V value) {
return putVal(key, value, false);
}
单纯的调用putVal方法,并且putVal的第三个参数设置为false,当设置为false的时候表示这个value一定会设置, true的时候,只有当这个key的value为空的时候才会设置
代码语言:javascript复制 final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();//K,V都不能为空,否则的话跑出异常
int hash = spread(key.hashCode()); //取得key的hash值
int binCount = 0; //用来计算在这个节点总共有多少个元素,用来控制扩容或者转移为树
for (Node<K,V>[] tab = table;;) { //
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable(); //第一次put的时候table没有初始化,则初始化table
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //通过哈希计算出一个表中的位置因为n是数组的长度,所以(n-1)&hash肯定不会出现数组越界
if (casTabAt(tab, i, null, //如果这个位置没有元素的话,则通过cas的方式尝试添加,注意这个时候是没有加锁的
new Node<K,V>(hash, key, value, null))) //创建一个Node添加到数组中区,null表示的是下一个节点为空
break; // no lock when adding to empty bin
}
/*
* 如果检测到某个节点的hash值是MOVED,则表示正在进行数组扩张的数据复制阶段,
* 则当前线程也会参与去复制,通过允许多线程复制的功能,一次来减少数组的复制所带来的性能损失
*/
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
/*
* 如果在这个位置有元素的话,就采用synchronized的方式加锁,
* 如果是链表的话(hash大于0),就对这个链表的所有元素进行遍历,
* 如果找到了key和key的hash值都一样的节点,则把它的值替换到
* 如果没找到的话,则添加在链表的最后面
* 否则,是树的话,则调用putTreeVal方法添加到树中去
*
* 在添加完之后,会对该节点上关联的的数目进行判断,
* 如果在8个以上的话,则会调用treeifyBin方法,来尝试转化为树,或者是扩容
*/
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) { //再次取出要存储的位置的元素,跟前面取出来的比较
if (fh >= 0) { //取出来的元素的hash值大于0,当转换为树之后,hash值为-2
binCount = 1;
for (Node<K,V> e = f;; binCount) { //遍历这个链表
K ek;
if (e.hash == hash && //要存的元素的hash,key跟要存储的位置的节点的相同的时候,替换掉该节点的value即可
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent) //当使用putIfAbsent的时候,只有在这个key没有设置值得时候才设置
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) { //如果不是同样的hash,同样的key的时候,则判断该节点的下一个节点是否为空,
pred.next = new Node<K,V>(hash, key, //为空的话把这个要加入的节点设置为当前节点的下一个节点
value, null);
break;
}
}
}
else if (f instanceof TreeBin) { //表示已经转化成红黑树类型了
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, //调用putTreeVal方法,将该元素添加到树中去
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD) //当在同一个节点的数目达到8个的时候,则扩张数组或将给节点的数据转为tree
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount); //计数
return null;
}
当添加一对键值对的时候,首先会去判断保存这些键值对的数组是不是初始化了, * 如果没有初始化就先调用initTable()方法来进行初始化过程 * 然后通过计算hash值来确定放在数组的哪个位置 ** 如果没有hash冲突就直接CAS插入,如果hash冲突的话,则取出这个节点来* * 如果取出来的节点的hash值是MOVED(-1)的话,则表示当前正在对这个数组进行扩容,复制到新的数组,则当前线程也去帮助复制 * 最后一种情况就是,如果这个节点,不为空,也不在扩容,则通过synchronized来加锁,进行添加操作 * 然后判断当前取出的节点位置存放的是链表还是树 * 如果是链表的话,则遍历整个链表,直到取出来的节点的key来个要放的key进行比较,如果key相等,并且key的hash值也相等的话, * 则说明是同一个key,则覆盖掉value,否则的话则添加到链表的末尾 * 如果是树的话,则调用putTreeVal方法把这个元素添加到树中去 * 最后在添加完成之后,调用addCount()方法统计size,判断在该节点处共有多少个节点(注意是添加前的个数),如果达到8个以上了的话, * 则调用treeifyBin方法来尝试将处的链表转为树,或者扩容数组
如果没有初始化就先调用initTable()方法来进行初始化过程
代码语言:javascript复制private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {//空的table才能进入初始化操作
if ((sc = sizeCtl) < 0) //sizeCtl<0表示其他线程已经在初始化了或者扩容了,挂起当前线程
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//CAS操作SIZECTL为-1,表示初始化状态
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];//初始化
table = tab = nt;
sc = n - (n >>> 2);//记录下次扩容的大小
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
如果取出来的节点的hash值是MOVED(-1)的话,则表示当前正在对这个数组进行扩容
代码语言:javascript复制/**
*帮助从旧的table的元素复制到新的table中
*/
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { //新的table nextTba已经存在前提下才能帮助扩容
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs 1 ||
sc == rs MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc 1)) {
transfer(tab, nextTab);//调用扩容方法
break;
}
}
return nextTab;
}
return table;
}
扩容方法transfer()
代码语言:javascript复制private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
// 每核处理的量小于16,则强制赋值16
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; //构建一个nextTable对象,其容量为原来容量的两倍
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
// 连接点指针,用于标志位(fwd的hash值为-1,fwd.nextTable=nextTab)
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
// 当advance == true时,表明该节点已经处理过了
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
// 控制 --i ,遍历原hash表中的节点
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 用CAS计算得到的transferIndex
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i n >= nextn) {
int sc;
// 已经完成所有节点复制了
if (finishing) {
nextTable = null;
table = nextTab; // table 指向nextTable
sizeCtl = (n << 1) - (n >>> 1); // sizeCtl阈值为原来的1.5倍
return; // 跳出死循环,
}
// CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
// 遍历的节点为null,则放入到ForwardingNode 指针节点
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
// f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了
// 这里是控制并发扩容的核心
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
// 节点加锁
synchronized (f) {
// 节点复制工作
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
// fh >= 0 ,表示为链表节点
if (fh >= 0) {
// 构造两个链表 一个是原链表 另一个是原链表的反序排列
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 在nextTable i 位置处插上链表
setTabAt(nextTab, i, ln);
// 在nextTable i n 位置处插上链表
setTabAt(nextTab, i n, hn);
// 在table i 位置处插上ForwardingNode 表示该节点已经处理过了
setTabAt(tab, i, fwd);
// advance = true 可以执行--i动作,遍历节点
advance = true;
}
// 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
hc;
}
}
// 扩容后树节点个数若<=6,将树转链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
调用treeifyBin方法来尝试将处的链表转为树
代码语言:javascript复制private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
//如果整个table的数量小于64,就扩容至原来的一倍,不转红黑树了
//因为这个阈值扩容可以减少hash冲突,不必要去转红黑树
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
//封装成TreeNode
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
//通过TreeBin对象对TreeNode转换成红黑树
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
数据加入成功了,现在调用addCount()方法计算ConcurrentHashMap的size
代码语言:javascript复制private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
//更新baseCount,table的数量,counterCells表示元素个数的变化
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
//如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
//check>=0表示需要进行扩容操作
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs 1 ||
sc == rs MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc 1))
transfer(tab, nt);
}
//当前线程发起库哦哦让操作,nextTable=null
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) 2))
transfer(tab, null);
s = sumCount();
}
}
}
– ConcurrentHashMap的get操作详解
代码语言:javascript复制 - 相比put方法,get就很单纯了,支持并发操作,
* 当key为null的时候回抛出NullPointerException的异常
* get操作通过首先计算key的hash值来确定该元素放在数组的哪个位置
* 然后遍历该位置的所有节点
* 如果不存在的话返回null
*/
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
计算hash值,定位到该table索引位置,如果是首节点符合就返回 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null
ConcurrentHashMap的同步机制 读操作:在get操作中,没有使用同步机制,也没有使用unsafe方法,所以读操作是支持并发操作的 写操作: 1、什么情况下会引起数组的扩容,扩容是通过transfer方法来进行的。而调用transfer方法的只有trePresize、helpTransfer和addCount三个方法: ·tryPresize是在treeIfybin和putAll方法中调用,treeIfybin主要是在put添加元素完之后,判断该数组节点相关元素是不是已经超过8个的时候,如果超过则会调用这个方法来扩容数组或者把链表转为树。 ·helpTransfer是在当一个线程要对table中元素进行操作的时候,如果检测到节点的HASH值为MOVED的时候,就会调用helpTransfer方法,在helpTransfer中再调用transfer方法来帮助完成数组的扩容 ·addCount是在当对数组进行操作,使得数组中存储的元素个数发生了变化的时候会调用的方法。
代码语言:javascript复制 2、引起数组扩容的情况如下:
·只有在往map中添加元素的时候,在某一个节点的数目已经超过了8个,同时数组的长度又小于64的时候,才会触发数组的扩容。 ·当数组中元素达到了sizeCtl的数量的时候,则会调用transfer方法来进行扩容
3、扩容的时候,可以不可以对数组进行读写操作 事实上是可以的。当在进行数组扩容的时候,如果当前节点还没有被处理(也就是说还没有设置为fwd节点),那就可以进行设置操作。 如果该节点已经被处理了,则当前线程也会加入到扩容的操作中去。 4、多个线程又是如何同步处理的 在ConcurrentHashMap中,同步处理主要是通过Synchronized和unsafe两种方式来完成的。
·在取得sizeCtl、某个位置的Node的时候,使用的都是unsafe的方法,来达到并发安全的目的
·当需要在某个位置设置节点的时候,则会通过Synchronized的同步机制来锁定该位置的节点。
·在数组扩容的时候,则通过处理的步长和fwd节点来达到并发安全的目的,通过设置hash值为MOVED
·当把某个位置的节点复制到扩张后的table的时候,也通过Synchronized的同步机制来保证现程安全
从JDK1.7版本的ReentrantLock Segment HashEntry,到JDK1.8版本中synchronized CAS HashEntry 红黑树,总结如下: 1、JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8实现降低锁的粒度就是HashEntry(首节点) 2、JDK1.8版本的数据结构变得更加简单,去掉了Segment这种数据结构,使用synchronized来进行同步锁粒度降低,所以不需要分段锁的概念,实现的复杂度也增加了 3、JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档
4、JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock: – 低粒度加锁方式,synchronized并不比ReentrantLock差, 粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了 – JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然 – 在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/152732.html原文链接:https://javaforall.cn