大家好,又见面了,我是你们的朋友全栈君。
如果需要使用同一类型的多个对象,可以使用数组和集合(后面介绍)。C#用特殊的记号声明,初始化和使用数组。Array类在后台发挥作用,它为数组中的元素排序和过滤提供了多个方法。使用枚举器,可以迭代数组中的所有元素。 如果需要使用不同类型的多个对象,可以使用Tuple(元组)类型。
一.简单数组(一维数组) 数组是一种数据结构,它可以包含同一个类型的多个元素。
1.数组的声明 在声明数组时,先定义数组中的元素类型,其后是一对空方括号和一个变量名。 int[] myArray;
2.数组的初始化 声明了数组之后,就必须为数组分配内存,以保存数组的所有元素。数组是引用类型,所以必须给它分配堆上的内存。为此,应使用new运算符,指定数组中元素的类型和数量来初始化数组的变量。 myArray = new int[4]; 在声明和初始化数组后,变量myArray就引用了4个整数值,它们位于托管堆上:
在指定了数组的大小后,就不能重新设置数组的大小。如果事先不知道数组中应包含多少个元素,就可以使用集合。 除了在两个语句中声明和初始化数组之外,还可以在一个语句中声明和初始化数组: int[] myArray = new int[4]; 还可以使用数组初始化器为数组的每个元素复制。数组初始化器只能在声明数组变量时使用,不能在声明数组之后使用。 int[] myArray = new int[4]{1,3,5,7}; 如果用花括号初始化数组,可以不指定数组的大小,因为编译器会自动统计元素的个数: int[] myArray = new int[]{1,3,5,7}; 也可以使用更简单的形式: int[] myArray = {1,3,5,7};
3.访问数组元素 在声明和初始化数组之后,就可以使用索引器访问其中的元素了。数组只支持有整型参数的索引器。 索引器总是以0开头,表示第一个元素。可以传递给索引器的最大值是元素个数减1,因为索引从0开始: int[] myArray = {1,3,5,7}; int v1 = myArray[0]; int v2 = myArray[1]; myArray[3] = 4; 可以使用数组的Length属性获取元素的个数。
4.数组中使用引用类型 数组除了能声明预定义类型的数组,还可以声明自定义类型的数组。 public class Person { public string FirstName { get; set; }
public string LastName { get; set; }
public override string ToString() { return String.Format(“{0} {1}”, FirstName, LastName); } }
Person[] myPersons = new Person[2]; myPersons[0] = new Person { FirstName = “Ayrton”, LastName = “Senna” }; myPersons[1] = new Person { FirstName = “Michael”, LastName = “Schumacher” };
如果数组中的元素是引用类型,就必须为每个数组元素分配内存。如果使用了数组中未分配内存的元素,就会抛出NullReferenceException类型的异常。 下面是内存情况:
对自定义类型也可以使用数组初始化器: Person[] myPersons2 = { new Person { FirstName=”Ayrton”, LastName=”Senna”}, new Person { FirstName=”Michael”, LastName=”Schumacher”} };
二.多维数组 多维数组用两个或多个整数来索引。 在C#中声明多维数组,需要在方括号中加上逗号。数组在初始化时应指定每一维的大小(也称为阶)。 int[,] twoDim = new int[3,3]; twoDim[0,0] = 1; twoDim[0,1] = 2; twoDim[0,2] = 3; twoDim[1,0] = 4; twoDim[1,1] = 5; twoDim[1,2] = 6; twoDim[2,0] = 7; twoDim[2,1] = 8; twoDim[2,2] = 9; 声明数组之后,就不能修改其阶数了。 也可以使用初始化器来初始化多维数组: int[,] twoDim ={ {1,2,3}, {4,5,6}, {7,8,9} }; 使用数组初始化器时,必须初始化数组的每个元素,不能遗漏任何元素。 声明一个三位数组: int[,,] threeDim ={ {{1,2},{3,4}}, {{5,6},{7,8}}, {{9,10},{11,12}} }; Console.WriteLine(threeDim[0,1,1]);
三.锯齿数组 二维数组的大小对应于一个矩形,而锯齿数组的大小设置比较灵活,在锯齿数组中,每一行都可以有不同的大小。 在声明锯齿数组时,要依次放置左右括号。在初始化锯齿数组时,只在第一对方括号中设置该数组包含的行数。定义各行中元素个数的第二个方括号设置为空,因为这类数组的每一行包含不同的元素个数。之后,为每一行指定行中的元素个数: int[][] jagged = new int[3][]; jagged[0] = new int[2]{1,2}; jagged[1] = new int[4]{3,4,5,6}; jagged[2] = new int[3]{7,8}; 迭代锯齿数组中的所有元素的代码可以放在嵌套的for循环中。在外层的for循环中迭代每一行,在内层的for循环中迭代一行中的每个元素: for(int row = 0;row<jagged.Length;row ) { for(int element = 0;element<jagged[row].Length;element ) { Console.WriteLine(“row:{0}, element:{1},value:{2}”,row,element,jagged[row][element]); } }
四.Array类 用方括号声明数组是C#中使用Array类的表示法。在后台使用C#语法,会创建一个派生自抽象基类Array的新类。这样,就可以使用Array类为每个C#数组定义的方法和属性了。 Array类实现的其它属性有LongLength和Rank。如果数组包含的元素个数超出了整数的取值范围,就可以使用LongLength属性来获得元素个数。使用Rank属性可以获得数组的维数。
1.创建数组 Array类是一个抽象类,所以不能使用构造函数来创建数组。但除了使用C#语法创建数组实例之外,还可以使用静态方法CreateInstance()创建数组。如果事先不知道元素的类型,该静态方法就很有用,因为类型可以作为Type对象传递给CreateInstance()方法。 CreateInstance()方法的第一个参数是元素的类型,第二个参数定义数组的大小。 可以使用SetValue()方法设置对应元素的值,用GetValue()方法读取对应元素的值。 Array intArray1 = Array.CreateInstance(typeof(int), 5); for (int i = 0; i < 5; i ) { intArray1.SetValue(33, i); }
for (int i = 0; i < 5; i ) { Console.WriteLine(intArray1.GetValue(i)); } 还可以将已经创建的数组强制转换称声明为int[]的数组: int[] intArray2 = (int[])intArray1; CreateInstance()方法有许多重载版本,可以创建多维数组和索引不基于0的数组。 //创建一个2X3的二维数组,第一维基于1,第二维基于10: int[] lengths = { 2, 3 }; int[] lowerBounds = { 1, 10 }; Array racers = Array.CreateInstance(typeof(Person), lengths, lowerBounds);
racers.SetValue(new Person { FirstName = “Alain”, LastName = “Prost” }, index1: 1, index2: 10); racers.SetValue(new Person { FirstName = “Emerson”, LastName = “Fittipaldi” }, 1, 11); racers.SetValue(new Person { FirstName = “Ayrton”, LastName = “Senna” }, 1, 12); racers.SetValue(new Person { FirstName = “Michael”, LastName = “Schumacher” }, 2, 10); racers.SetValue(new Person { FirstName = “Fernando”, LastName = “Alonso” }, 2, 11); racers.SetValue(new Person { FirstName = “Jenson”, LastName = “Button” }, 2, 12);
Person[,] racers2 = (Person[,])racers; Person first = racers2[1, 10]; Person last = racers2[2, 12];
2.复制数组 因为数组是引用类型,所以将一个数组变量赋予另一个数组变量,就会得到两个引用同一数组的变量。 数组实现ICloneable接口。这个接口定义的Clone()方法会复制数组,创建数组的浅表副本。
如果数组的元素是值类型,Clone()方法会复制所有值: int[] a1 = {1,2}; int[] a2 = (int[])a1.Clone(); 如果数组包含引用类型,只复制引用。
除了使用Clone()方法之外,还可以使用Array.Copy()方法创建浅表副本。 Person[] beatles = { new Person { FirstName=”John”, LastName=”Lennon” }, new Person { FirstName=”Paul”, LastName=”McCartney” } };
Person[] beatlesClone = (Person[])beatles.Clone(); Person[] beatlesClone2 = new Person[2]; Array.Copy(beatlesClone,beatlesClone2,2);//注意与Clone的语法区别,Copy需要传递阶数相同的已有数组。(还可以使用CopyTo()方法)
3.排序 Array类使用快速排序算法对数组中的元素进行排序。Sort()方法需要数组中的元素实现IComparable接口。因为简单类型(如String,Int32)实现IComparable接口,所以可以对包含这些类型的元素排序。 string[] names = { ”Christina Aguilera”, ”Shakira”, ”Beyonce”, ”Gwen Stefani” };
Array.Sort(names);
foreach (string name in names) { Console.WriteLine(name); }
如果对数组使用使用自定义类,就必须实现IComparable接口。这个接口只定义了一个方法CompareTo()方法,如果要比较的对象相等,该方法就返回0.如果该实例应排在参数对象的前面,该方法就返回小于i0de值。如果该实例应排在参数对象的后面,该方法就返回大于0的值。 public class Person : IComparable<Person> { public string FirstName { get; set; }
public string LastName { get; set; }
public override string ToString() { return String.Format(“{0} {1}”, FirstName, LastName); }
public int CompareTo(Person other) { if (other == null) throw new ArgumentNullException(“other”);
int result = this.LastName.CompareTo(other.LastName); if (result == 0) { result = this.FirstName.CompareTo(other.FirstName); }
return result; }
}
客户端代码: Person[] persons = { new Person { FirstName=”Damon”, LastName=”Hill” }, new Person { FirstName=”Niki”, LastName=”Lauda” }, new Person { FirstName=”Ayrton”, LastName=”Senna” }, new Person { FirstName=”Graham”, LastName=”Hill” } }; Array.Sort(persons); foreach (Person p in persons) { Console.WriteLine(p); }
如果Person对象的排序方式与上述不同,或者不能修改在数组中用作元素的类,就可以实现IComparer接口或IComparer<T>接口。这两个接口定义了方法Compare()方法。机型比较的类必须实现这两个接口之一。
public enum PersonCompareType { FirstName, LastName } //通过使用实现了IComparer<T> 泛型接口的PersonComparer类比较Person对象数组。 public class PersonComparer : IComparer<Person> { private PersonCompareType compareType;
public PersonComparer(PersonCompareType compareType) { this.compareType = compareType; }
#region IComparer<Person> Members
public int Compare(Person x, Person y) { if (x == null) throw new ArgumentNullException(“x”); if (y == null) throw new ArgumentNullException(“y”);
switch (compareType) { case PersonCompareType.FirstName: return x.FirstName.CompareTo(y.FirstName); case PersonCompareType.LastName: return x.LastName.CompareTo(y.LastName); default: throw new ArgumentException( ”unexpected compare type”); } }
#endregion } 客户端代码: Person[] persons = { new Person { FirstName=”Damon”, LastName=”Hill” }, new Person { FirstName=”Niki”, LastName=”Lauda” }, new Person { FirstName=”Ayrton”, LastName=”Senna” }, new Person { FirstName=”Graham”, LastName=”Hill” } }; Array.Sort(persons, new PersonComparer(PersonCompareType.FirstName));
foreach (Person p in persons) { Console.WriteLine(p); }
五.数组作为参数 数组可以作为参数传递给方法,也可以从方法中返回。
1.数组协变 数组支持协变。这表示数组可以声明为基类,其派生类型的元素可以赋值于数组元素。 static void DisPlay(object[] o) { //.. } 可以给该方法传递一个Person[]。 数组协变只能用于引用类型,不能用于值类型。
2.ArraySegment<T> 结构ArraySegment<T>表示数组的一段。如果需要使用不同的方法处理某个大型数组的不同部分,那么可以把相应的数组部分复制到各个方法。 ArraySegment<T>结构包含了关于数组段的信息(偏移量和元素个数)。 static void Main() { int[] ar1 = { 1, 4, 5, 11, 13, 18 }; int[] ar2 = { 3, 4, 5, 18, 21, 27, 33 }; var segments = new ArraySegment<int>[2] { new ArraySegment<int>(ar1, 0, 3), new ArraySegment<int>(ar2, 3, 3) };
var sum = SumOfSegments(segments); Console.WriteLine(“sum of all segments: {0}”, sum);
}
static int SumOfSegments(ArraySegment<int>[] segments) { int sum = 0; foreach (var segment in segments) { for (int i = segment.Offset; i < segment.Offset segment.Count; i ) { sum = segment.Array[i]; }
} return sum; }
数组段不复制原数组的元素,但原数组可以通过ArraySegment<T>访问。如果数组段中的元素改变了,这些变化就会反映到原数组中。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/154201.html原文链接:https://javaforall.cn