开源SPL强化MangoDB计算

2022-09-09 09:39:27 浏览数 (1)

MongoDB是NoSQL数据库的典型代表,支持文档结构的存储方式数据存储和使用更为便捷,数据存取效率也很高,但计算能力较弱,实际使用中涉及MongoDB的计算尤其是复杂计算会很麻烦,这就需要具备强计算能力的数据处理引擎与其配合。

开源集算器SPL是一款专业结构化数据计算引擎,拥有丰富的计算类库和完备、不依赖数据库的计算能力。SPL提供了独立的过程计算语法,尤其擅长复杂计算,可以增强MongoDB的计算能力,完成分组汇总、关联计算、子查询等通通不在话下。

常规查询

MongoDB不容易搞定的连接JOIN运算,用SPL很容易搞定:

A

B

1

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

/连接MongDB

2

=mongo_shell(A1,"c1.find()").fetch()

/获取数据

3

=mongo_shell(A1,"c2.find()").fetch()

4

=A2.join(user1:user2,A3:user1:user2,output)

/关联计算

5

>A1.close()

/关闭连接

单表多次参与运算,复用计算结果:

A

B

1

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

2

=mongo_shell(A1,“course.find(,{_id:0})”).fetch()

/获取数据

3

=A2.group(Sno).((avg   = ~.avg(Grade), ~.select(Grade>avg))).conj()

/计算成绩大于平均值

4

>A1.close()

IN计算:

A

B

1

=mongo_open("mongodb://localhost:27017/test")

2

=mongo_shell(A1,"orders.find(,{_id:0})")

/获取数据

3

=mongo_shell(A1,"employee.find({STATE:'California'},{_id:0})").fetch()

/过滤employee数据

4

=A3.(EID).sort()

/取出EID并排序

5

=A2.select(A4.pos@b(SELLERID)).fetch()

/二分法查找

6

>A1.close()

外键对象化,外键指针不仅方便,效率也高:

A

B

1

=mongo_open("mongodb://localhost:27017/local")

2

=mongo_shell(A1,"Progress.find({},   {_id:0})").fetch()

/获取Progress数据

3

=A2.groups(courseid;   count(userId):popularityCount)

/按课程分组计数

4

=mongo_shell(A1,"Course.find(,{title:1})").fetch()

/获取Course数据

5

=A3.switch(courseid,A4:_id)

/外键连接

6

=A5.new(popularityCount,courseid.title)

/创建结果集

7

=A1.close()

APPLY算法的简单实现:

A

B

1

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

2

=mongo_shell(A1,"users.find()").fetch()

/获取users数据

3

=mongo_shell(A1,"workouts.find()").fetch()

/获取workouts数据

4

=A2.conj(A3.select(A2.workouts.pos(_id)).derive(A2.name))

/查询_id 值workouts 序列的记录

5

>A1.close()

集合运算,合并交差:

A

B

1

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

2

=mongo_shell(A1,"emp1.find()").fetch()

3

=mongo_shell(A1,"emp2.find()").fetch()

4

=[A2,A3].conj()

/多序列合集

5

=[A2,A3].merge@ou()

/全行对比求并集

6

=[A2,A3].merge@ou(_id,   NAME)

/键值对比求并集

7

=[A2,A3].merge@oi()

/全行对比求交集

8

=[A2,A3].merge@oi(_id,   NAME)

/键值对比求交集

9

=[A2,A3].merge@od()

/全行对比求差集

10

=[A2,A3].merge@od(_id,   NAME)

/键值对比求差集

11

>A1.close()

在序列中查找成员序号:

A

B

1

=mongo_open("mongodb://localhost:27017/local)

2

=mongo_shell(A1,"users.find({name:'jim'},{name:1,friends:1,_id:0})")   .fetch()

3

=A2.friends.pos("luke")

/从friends序列中获取成员序号

4

=A1.close()

多成员集合的交集:

A

B

1

[Chemical,   Biology, Math]

/课程

2

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

3

=mongo_shell(A2,"student.find()").fetch()

/获取student数据

4

=A3.select(Lesson^A1!=[])

/查询选修至少一门的记录

5

=A4.new(_id,   Name, ~.Lesson^A1:Lession)

/计算出结果

6

>A2.close()

复杂计算

TOPN运算:

A

B

1

=mongo_open("mongodb://127.0.0.1:27017/test")

2

=mongo_shell(A1,"last3.find(,{_id:0};{variable:1})")

/获取last3数据,并按variable排序

3

for A2;variable

=A3.top(3;-timestamp)

/选出timestamp最晚的3个

4

=@|B3

/将选出文档追加到B4中

5

=B4.minp(~.timestamp)

/选出timstamp最早的文档

6

>mongo_close(A1)

嵌套结构的聚合:

A

1

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

2

=mongo_shell(A1,"computer.find()").fetch()

3

=A2.new(_id:ID,income.array().sum():INCOME,output.array().sum():OUTPUT)

4

>A1.close()

合并多属性子文档:

A

B

C

1

=mongo_open("mongodb://localhost:27017/local")

2

=mongo_shell(A1,"c1.find(,{_id:0};{name:1})")

3

=create(_id,   readUsers)

/创建结果序表

4

for   A2;name

=A4.conj(acls.read.users|acls.append.users|acls.edit.users|acls.fullControl.users).id()

/取出所有users字段

5

>A3.insert(0,   A4.name, B4)

/插入本组数据

6

=A1.close()

嵌套List子文档的查询

A

B

1

=mongo_open("mongodb://localhost:27017/local")

2

=mongo_shell(A1,"Cbettwen.find(,{_id:0})").fetch()

3

=A2.conj((t=~.objList.data.dataList,   t.select((s=float(~.split@c1()(1)), s>6154   && s<=6155))))

/找到符合条件的字符串

4

=A1.close()

交叉汇总:

A

1

=mongo_open("mongodb://localhost:27017/local")

2

=mongo_shell(A1,"student.find()").fetch()

3

=A2.group(school)

4

=A3.new(school:school,~.align@a(5,sub1).(~.len()):sub1,~.align@a(5,sub2).(~.len()):sub2)

5

=A4.new(school,sub1(5):sub1-5,sub1(4):sub1-4,sub1(3):sub1-3,sub1(2):sub1-2,sub1(1):sub1-1,sub2(5):sub2-5,sub2(4):sub2-4,sub2(3):sub2-3,sub2(2):sub2-2,sub2(1):sub2-1)

6

=A1.close()

分段分组

A

B

1

[3000,5000,7500,10000,15000]

/Sales分段区间

2

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

3

=mongo_shell(A2,"sales.find()").fetch()

4

=A3.groups(A1.pseg(~.SALES):Segment;count(1):   number)

/根据 SALES 区间分组统计员工数

5

>A2.close()

分类分组

A

B

1

=mongo_open("mongodb://127.0.0.1:27017/raqdb")

2

=mongo_shell(A1,"books.find()")

3

=A2.groups(addr,book;count(book):   Count)

/分组计数

4

=A3.groups(addr;sum(Count):Total)

/分组统计

5

=A3.join(addr,A4:addr,Total)

/关联计算

6

>A1.close()

数据写入

导出成CSV:

A

B

1

=mongo_open("mongodb://localhost:27017/raqdb")

2

=mongo_shell(A1,"carInfo.find(,{_id:0})")

3

=A2.conj((t=~,cars.car.new(t.id:id,   t.cars.name, ~:car)))

/对car字段进行拆分成行

4

=file("D:\data.csv").export@tc(A3)

/导出生成csv文件

5

>A1.close()

更新数据库(MongoDB到MySQL):

A

B

1

=mongo_open("mongodb://localhost:27017/raqdb")

/连接MongDB

2

=mongo_shell(A1,"course.find(,{_id:0})").fetch()

3

=connect("myDB1")

/连接mysql

4

=A3.query@x("select   * from course2").keys(Sno, Cno)

5

>A3.update(A2:A4,   course2, Sno, Cno, Grade; Sno,Cno)

/向mysql更新数据

6

>A1.close()

更新数据库(MySQL到MongoDB):

A

B

1

=connect("mysql")

/连接mysql

2

=A1.query@x("select   * from course2")

/获取表course2数据

3

=mongo_open("mongodb://localhost:27017/raqdb")

/连接MongDB

4

=mongo_insert(A3,   "course",A2)

/将MySQL表course2导入MongoDB集合course

5

>A3.close()

混合计算

借助SPL还很容易实现MongoDB与其他数据源进行混合计算:

A

B

1

=mongo_open("mongodb://localhost:27017/test")

/连接MongDB

2

=mongo_shell(A1,"emp.find({'$and':[{'Birthday':{'$gte':'" string(begin) "'}},{'Birthday':{'$lte':'" string(end) "'}}]},{_id:0})").fetch()

/查询某时间段的记录

3

=A1.close()

/关闭MongoDB

4

=myDB1.query("select   * from cities")

/获取mysql中表cities数据

5

=A2.switch(CityID,A4:   CityID)

/外键关联

6

=A5.new(EID,Dept,CityID.CityName:CityName,Name,Gender)

/创建结果集

7

return   A6

/返回

SQL支持

SPL除了原生语法,还提供了相当于SQL92标准的SQL支持,可以使用SQL查询MongoDB了,比如前面的关联计算:

A

1

=mongo_open("mongodb://127.0.0.1:27017/test")

2

=mongo_shell(A1,"c1.find()").fetch()

3

=mongo_shell@x(A1,"c2.find()").fetch()

4

$select s.* from {A2} as s left join {A3}   as r on s.user1=r.user1 and s.user2=r.user2 where r.income>0.3

应用集成

不仅如此,SPL提供了标准JDBC/ODBC等应用程序接口,集成调用很方便。如JDBC的使用:

代码语言:javascript复制
…
Class.forName("com.esproc.jdbc.InternalDriver");
Connection conn = DriverManager.getConnection("jdbc:esproc:local://");
PrepareStatement st=con.prepareStatement("call splScript(?)"); // splScript为spl脚本文件名
st.setObject(1,"California");
st.execute();
ResultSet rs = st.getResultSet();
…

有了这些功能,增强MongoDB的计算能力可不是说说而已,要不要下载试试?

SPL资料

  • SPL下载
  • SPL源代码

0 人点赞