大家好,又见面了,我是你们的朋友全栈君。
N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理。另外一方面,N-Gram的另外一个作用是用来评估两个字符串之间的差异程度。这是模糊匹配中常用的一种手段。本文将从此开始,进而向读者展示N-Gram在自然语言处理中的各种powerful的应用。
- 基于N-Gram模型定义的字符串距离
- 利用N-Gram模型评估语句是否合理
- 使用N-Gram模型时的数据平滑算法
欢迎关注白马负金羁的博客 http://blog.csdn.net/baimafujinji,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。
基于N-Gram模型定义的字符串距离
在自然语言处理时,最常用也最基础的一个操作是就是“模式匹配”,或者称为“字符串查找”。而模式匹配(字符串查找)又分为精确匹配和模糊匹配两种。
所谓精确匹配,大家应该并不陌生,比如我们要统计一篇文章中关键词 “information” 出现的次数,这时所使用的方法就是精确的模式匹配。这方面的算法也比较多,而且应该是计算机相关专业必修的基础课中都会涉及到的内容,例如KMP算法、BM算法和BMH算法等等。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/152313.html原文链接:https://javaforall.cn