IE 兼容
- attchEvent('on' type, handler)
- detachEvent('on' type, handler)
事件触发的过程是怎样的
事件触发有三个阶段:
window
往事件触发处传播,遇到注册的捕获事件会触发- 传播到事件触发处时触发注册的事件
- 从事件触发处往
window
传播,遇到注册的冒泡事件会触发
事件触发一般来说会按照上面的顺序进行,但是也有特例,如果给一个 body
中的子节点同时注册冒泡和捕获事件,事件触发会按照注册的顺序执行。
// 以下会先打印冒泡然后是捕获
node.addEventListener(
'click',
event => {
console.log('冒泡')
},
false
)
node.addEventListener(
'click',
event => {
console.log('捕获 ')
},
true
)
通常使用 addEventListener
注册事件,该函数的第三个参数可以是布尔值,也可以是对象。对于布尔值 useCapture
参数来说,该参数默认值为 false
,useCapture
决定了注册的事件是捕获事件还是冒泡事件。对于对象参数来说,可以使用以下几个属性:
capture
:布尔值,和useCapture
作用一样once
:布尔值,值为true
表示该回调只会调用一次,调用后会移除监听passive
:布尔值,表示永远不会调用preventDefault
一般来说,如果只希望事件只触发在目标上,这时候可以使用 stopPropagation
来阻止事件的进一步传播。通常认为 stopPropagation
是用来阻止事件冒泡的,其实该函数也可以阻止捕获事件。
stopImmediatePropagation
同样也能实现阻止事件,但是还能阻止该事件目标执行别的注册事件。
node.addEventListener(
'click',
event => {
event.stopImmediatePropagation()
console.log('冒泡')
},
false
)
// 点击 node 只会执行上面的函数,该函数不会执行
node.addEventListener(
'click',
event => {
console.log('捕获 ')
},
true
)
原型
代码语言:javascript复制构造函数是一种特殊的方法,主要用来在创建对象时初始化对象。每个构造函数都有prototype(原型)(箭头函数以及Function.prototype.bind()没有)属性,
这个prototype(原型)属性是一个指针,指向一个对象,这个对象的用途是包含特定类型的所有实例共享的
属性和方法,即这个原型对象是用来给实例对象共享属性和方法的。每个实例对象的__proto__都指向这个
构造函数/类的prototype属性。
面向对象的三大特性:继承/多态/封装
关于new操作符:
1. new执行的函数, 函数内部默认生成了一个对象
2. 函数内部的this默认指向了这个new生成的对象
3. new执行函数生成的这个对象, 是函数的默认返回值
ES5例子:
function Person(obj) {
this.name = obj.name
this.age= obj.age
}
// 原型方法
Person.prototype.say = function() {
console.log('你好,', this.name )
}
// p为实例化对象,new Person()这个操作称为构造函数的实例化
let p = new Person({name: '番茄', age: '27'})
console.log(p.name, p.age)
p.say()
ES6例子:
class Person{
constructor(obj) {
this.name = obj.name
this.age= obj.age
}
say() {
console.log(this.name)
}
}
let p = new Person({name: 'ES6-番茄', age: '27'})
console.log(p.name, p.age)
p.say()
如何解决跨越问题
(1)CORS
下面是MDN对于CORS的定义:
跨域资源共享(CORS) 是一种机制,它使用额外的 HTTP 头来告诉浏览器 让运行在一个 origin (domain)上的Web应用被准许访问来自不同源服务器上的指定的资源。当一个资源从与该资源本身所在的服务器不同的域、协议或端口请求一个资源时,资源会发起一个跨域HTTP 请求。
CORS需要浏览器和服务器同时支持,整个CORS过程都是浏览器完成的,无需用户参与。因此实现CORS的关键就是服务器,只要服务器实现了CORS请求,就可以跨源通信了。
浏览器将CORS分为简单请求和非简单请求:
简单请求不会触发CORS预检请求。若该请求满足以下两个条件,就可以看作是简单请求:
1)请求方法是以下三种方法之一:
- HEAD
- GET
- POST
2)HTTP的头信息不超出以下几种字段:
- Accept
- Accept-Language
- Content-Language
- Last-Event-ID
- Content-Type:只限于三个值application/x-www-form-urlencoded、multipart/form-data、text/plain
若不满足以上条件,就属于非简单请求了。
(1)简单请求过程:
对于简单请求,浏览器会直接发出CORS请求,它会在请求的头信息中增加一个Orign字段,该字段用来说明本次请求来自哪个源(协议 端口 域名),服务器会根据这个值来决定是否同意这次请求。如果Orign指定的域名在许可范围之内,服务器返回的响应就会多出以下信息头:
代码语言:javascript复制Access-Control-Allow-Origin: http://api.bob.com // 和Orign一直
Access-Control-Allow-Credentials: true // 表示是否允许发送Cookie
Access-Control-Expose-Headers: FooBar // 指定返回其他字段的值
Content-Type: text/html; charset=utf-8 // 表示文档类型
如果Orign指定的域名不在许可范围之内,服务器会返回一个正常的HTTP回应,浏览器发现没有上面的Access-Control-Allow-Origin头部信息,就知道出错了。这个错误无法通过状态码识别,因为返回的状态码可能是200。
在简单请求中,在服务器内,至少需要设置字段:Access-Control-Allow-Origin
(2)非简单请求过程
非简单请求是对服务器有特殊要求的请求,比如请求方法为DELETE或者PUT等。非简单请求的CORS请求会在正式通信之前进行一次HTTP查询请求,称为预检请求。
浏览器会询问服务器,当前所在的网页是否在服务器允许访问的范围内,以及可以使用哪些HTTP请求方式和头信息字段,只有得到肯定的回复,才会进行正式的HTTP请求,否则就会报错。
预检请求使用的请求方法是OPTIONS,表示这个请求是来询问的。他的头信息中的关键字段是Orign,表示请求来自哪个源。除此之外,头信息中还包括两个字段:
- Access-Control-Request-Method:该字段是必须的,用来列出浏览器的CORS请求会用到哪些HTTP方法。
- Access-Control-Request-Headers: 该字段是一个逗号分隔的字符串,指定浏览器CORS请求会额外发送的头信息字段。
服务器在收到浏览器的预检请求之后,会根据头信息的三个字段来进行判断,如果返回的头信息在中有Access-Control-Allow-Origin这个字段就是允许跨域请求,如果没有,就是不同意这个预检请求,就会报错。
服务器回应的CORS的字段如下:
代码语言:javascript复制Access-Control-Allow-Origin: http://api.bob.com // 允许跨域的源地址
Access-Control-Allow-Methods: GET, POST, PUT // 服务器支持的所有跨域请求的方法
Access-Control-Allow-Headers: X-Custom-Header // 服务器支持的所有头信息字段
Access-Control-Allow-Credentials: true // 表示是否允许发送Cookie
Access-Control-Max-Age: 1728000 // 用来指定本次预检请求的有效期,单位为秒
只要服务器通过了预检请求,在以后每次的CORS请求都会自带一个Origin头信息字段。服务器的回应,也都会有一个Access-Control-Allow-Origin头信息字段。
在非简单请求中,至少需要设置以下字段:
代码语言:javascript复制'Access-Control-Allow-Origin'
'Access-Control-Allow-Methods'
'Access-Control-Allow-Headers'
减少OPTIONS请求次数:
OPTIONS请求次数过多就会损耗页面加载的性能,降低用户体验度。所以尽量要减少OPTIONS请求次数,可以后端在请求的返回头部添加:Access-Control-Max-Age:number。它表示预检请求的返回结果可以被缓存多久,单位是秒。该字段只对完全一样的URL的缓存设置生效,所以设置了缓存时间,在这个时间范围内,再次发送请求就不需要进行预检请求了。
CORS中Cookie相关问题:
在CORS请求中,如果想要传递Cookie,就要满足以下三个条件:
- 在请求中设置
withCredentials
默认情况下在跨域请求,浏览器是不带 cookie 的。但是我们可以通过设置 withCredentials 来进行传递 cookie.
代码语言:javascript复制// 原生 xml 的设置方式
var xhr = new XMLHttpRequest();
xhr.withCredentials = true;
// axios 设置方式
axios.defaults.withCredentials = true;
- Access-Control-Allow-Credentials 设置为 true
- Access-Control-Allow-Origin 设置为非
*
(2)JSONP
jsonp的原理就是利用<script>
标签没有跨域限制,通过<script>
标签src属性,发送带有callback参数的GET请求,服务端将接口返回数据拼凑到callback函数中,返回给浏览器,浏览器解析执行,从而前端拿到callback函数返回的数据。
1)原生JS实现:
代码语言:javascript复制<script>
var script = document.createElement('script');
script.type = 'text/javascript';
// 传参一个回调函数名给后端,方便后端返回时执行这个在前端定义的回调函数
script.src = 'http://www.domain2.com:8080/login?user=admin&callback=handleCallback';
document.head.appendChild(script);
// 回调执行函数
function handleCallback(res) {
alert(JSON.stringify(res));
}
</script>
服务端返回如下(返回时即执行全局函数):
代码语言:javascript复制handleCallback({"success": true, "user": "admin"})
2)Vue axios实现:
代码语言:javascript复制this.$http = axios;
this.$http.jsonp('http://www.domain2.com:8080/login', {
params: {},
jsonp: 'handleCallback'
}).then((res) => {
console.log(res);
})
后端node.js代码:
代码语言:javascript复制var querystring = require('querystring');
var http = require('http');
var server = http.createServer();
server.on('request', function(req, res) {
var params = querystring.parse(req.url.split('?')[1]);
var fn = params.callback;
// jsonp返回设置
res.writeHead(200, { 'Content-Type': 'text/javascript' });
res.write(fn '(' JSON.stringify(params) ')');
res.end();
});
server.listen('8080');
console.log('Server is running at port 8080...');
JSONP的缺点:
- 具有局限性, 仅支持get方法
- 不安全,可能会遭受XSS攻击
(3)postMessage 跨域
postMessage是HTML5 XMLHttpRequest Level 2中的API,且是为数不多可以跨域操作的window属性之一,它可用于解决以下方面的问题:
- 页面和其打开的新窗口的数据传递
- 多窗口之间消息传递
- 页面与嵌套的iframe消息传递
- 上面三个场景的跨域数据传递
用法:postMessage(data,origin)方法接受两个参数:
- data: html5规范支持任意基本类型或可复制的对象,但部分浏览器只支持字符串,所以传参时最好用JSON.stringify()序列化。
- origin: 协议 主机 端口号,也可以设置为"*",表示可以传递给任意窗口,如果要指定和当前窗口同源的话设置为"/"。
1)a.html:(domain1.com/a.html)
代码语言:javascript复制<iframe id="iframe" src="http://www.domain2.com/b.html" style="display:none;"></iframe>
<script> var iframe = document.getElementById('iframe'); iframe.onload = function() { var data = { name: 'aym'
}; // 向domain2传送跨域数据
iframe.contentWindow.postMessage(JSON.stringify(data), 'http://www.domain2.com'); }; // 接受domain2返回数据
window.addEventListener('message', function(e) { alert('data from domain2 ---> ' e.data); }, false);
</script>
2)b.html:(domain2.com/b.html)
代码语言:javascript复制<script>
// 接收domain1的数据
window.addEventListener('message', function(e) {
alert('data from domain1 ---> ' e.data);
var data = JSON.parse(e.data);
if (data) {
data.number = 16;
// 处理后再发回domain1
window.parent.postMessage(JSON.stringify(data), 'http://www.domain1.com');
}
}, false);
</script>
(4)nginx代理跨域
nginx代理跨域,实质和CORS跨域原理一样,通过配置文件设置请求响应头Access-Control-Allow-Origin…等字段。
1)nginx配置解决iconfont跨域
浏览器跨域访问js、css、img等常规静态资源被同源策略许可,但iconfont字体文件(eot|otf|ttf|woff|svg)例外,此时可在nginx的静态资源服务器中加入以下配置。
代码语言:text复制location / {
add_header Access-Control-Allow-Origin *;
}
2)nginx反向代理接口跨域
跨域问题:同源策略仅是针对浏览器的安全策略。服务器端调用HTTP接口只是使用HTTP协议,不需要同源策略,也就不存在跨域问题。
实现思路:通过Nginx配置一个代理服务器域名与domain1相同,端口不同)做跳板机,反向代理访问domain2接口,并且可以顺便修改cookie中domain信息,方便当前域cookie写入,实现跨域访问。
nginx具体配置:
代码语言:javascript复制#proxy服务器
server {
listen 81;
server_name www.domain1.com;
location / {
proxy_pass http://www.domain2.com:8080; #反向代理
proxy_cookie_domain www.domain2.com www.domain1.com; #修改cookie里域名
index index.html index.htm;
# 当用webpack-dev-server等中间件代理接口访问nignx时,此时无浏览器参与,故没有同源限制,下面的跨域配置可不启用
add_header Access-Control-Allow-Origin http://www.domain1.com; #当前端只跨域不带cookie时,可为*
add_header Access-Control-Allow-Credentials true;
}
}
(5)nodejs 中间件代理跨域
node中间件实现跨域代理,原理大致与nginx相同,都是通过启一个代理服务器,实现数据的转发,也可以通过设置cookieDomainRewrite参数修改响应头中cookie中域名,实现当前域的cookie写入,方便接口登录认证。
1)非vue框架的跨域 使用node express http-proxy-middleware搭建一个proxy服务器。
- 前端代码:
var xhr = new XMLHttpRequest();
// 前端开关:浏览器是否读写cookie
xhr.withCredentials = true;
// 访问http-proxy-middleware代理服务器
xhr.open('get', 'http://www.domain1.com:3000/login?user=admin', true);
xhr.send();
- 中间件服务器代码:
var express = require('express');
var proxy = require('http-proxy-middleware');
var app = express();
app.use('/', proxy({
// 代理跨域目标接口
target: 'http://www.domain2.com:8080',
changeOrigin: true,
// 修改响应头信息,实现跨域并允许带cookie
onProxyRes: function(proxyRes, req, res) {
res.header('Access-Control-Allow-Origin', 'http://www.domain1.com');
res.header('Access-Control-Allow-Credentials', 'true');
},
// 修改响应信息中的cookie域名
cookieDomainRewrite: 'www.domain1.com' // 可以为false,表示不修改
}));
app.listen(3000);
console.log('Proxy server is listen at port 3000...');
2)vue框架的跨域
node vue webpack webpack-dev-server搭建的项目,跨域请求接口,直接修改webpack.config.js配置。开发环境下,vue渲染服务和接口代理服务都是webpack-dev-server同一个,所以页面与代理接口之间不再跨域。
webpack.config.js部分配置:
代码语言:javascript复制module.exports = {
entry: {},
module: {},
...
devServer: {
historyApiFallback: true,
proxy: [{
context: '/login',
target: 'http://www.domain2.com:8080', // 代理跨域目标接口
changeOrigin: true,
secure: false, // 当代理某些https服务报错时用
cookieDomainRewrite: 'www.domain1.com' // 可以为false,表示不修改
}],
noInfo: true
}
}
(6)document.domain iframe跨域
此方案仅限主域相同,子域不同的跨域应用场景。实现原理:两个页面都通过js强制设置document.domain为基础主域,就实现了同域。
1)父窗口:(domain.com/a.html)
代码语言:javascript复制<iframe id="iframe" src="http://child.domain.com/b.html"></iframe>
<script>
document.domain = 'domain.com'; var user = 'admin';
</script>
1)子窗口:(child.domain.com/a.html)
代码语言:javascript复制<script>
document.domain = 'domain.com';
// 获取父窗口中变量
console.log('get js data from parent ---> ' window.parent.user);
</script>
(7)location.hash iframe跨域
实现原理:a欲与b跨域相互通信,通过中间页c来实现。 三个页面,不同域之间利用iframe的location.hash传值,相同域之间直接js访问来通信。
具体实现:A域:a.html -> B域:b.html -> A域:c.html,a与b不同域只能通过hash值单向通信,b与c也不同域也只能单向通信,但c与a同域,所以c可通过parent.parent访问a页面所有对象。
1)a.html:(domain1.com/a.html)
代码语言:javascript复制<iframe id="iframe" src="http://www.domain2.com/b.html" style="display:none;"></iframe>
<script>
var iframe = document.getElementById('iframe'); // 向b.html传hash值
setTimeout(function() { iframe.src = iframe.src '#user=admin'; }, 1000); // 开放给同域c.html的回调方法
function onCallback(res) { alert('data from c.html ---> ' res); }
</script>
2)b.html:(.domain2.com/b.html)
代码语言:text复制<iframe id="iframe" src="http://www.domain1.com/c.html" style="display:none;"></iframe>
<script>
var iframe = document.getElementById('iframe');
// 监听a.html传来的hash值,再传给c.html
window.onhashchange = function () {
iframe.src = iframe.src location.hash;
};
</script>
代码语言:javascript复制<script>
// 监听b.html传来的hash值
window.onhashchange = function () {
// 再通过操作同域a.html的js回调,将结果传回
window.parent.parent.onCallback('hello: ' location.hash.replace('#user=', ''));
};
</script>
(8)window.name iframe跨域
window.name属性的独特之处:name值在不同的页面(甚至不同域名)加载后依旧存在,并且可以支持非常长的 name 值(2MB)。
1)a.html:(domain1.com/a.html)
代码语言:javascript复制var proxy = function(url, callback) {
var state = 0;
var iframe = document.createElement('iframe');
// 加载跨域页面
iframe.src = url;
// onload事件会触发2次,第1次加载跨域页,并留存数据于window.name
iframe.onload = function() {
if (state === 1) {
// 第2次onload(同域proxy页)成功后,读取同域window.name中数据
callback(iframe.contentWindow.name);
destoryFrame();
} else if (state === 0) {
// 第1次onload(跨域页)成功后,切换到同域代理页面
iframe.contentWindow.location = 'http://www.domain1.com/proxy.html';
state = 1;
}
};
document.body.appendChild(iframe);
// 获取数据以后销毁这个iframe,释放内存;这也保证了安全(不被其他域frame js访问)
function destoryFrame() {
iframe.contentWindow.document.write('');
iframe.contentWindow.close();
document.body.removeChild(iframe);
}
};
// 请求跨域b页面数据
proxy('http://www.domain2.com/b.html', function(data){
alert(data);
});
2)proxy.html:(domain1.com/proxy.html)
中间代理页,与a.html同域,内容为空即可。
3)b.html:(domain2.com/b.html)
代码语言:javascript复制<script>
window.name = 'This is domain2 data!';
</script>
通过iframe的src属性由外域转向本地域,跨域数据即由iframe的window.name从外域传递到本地域。这个就巧妙地绕过了浏览器的跨域访问限制,但同时它又是安全操作。
(9)WebSocket协议跨域
WebSocket protocol是HTML5一种新的协议。它实现了浏览器与服务器全双工通信,同时允许跨域通讯,是server push技术的一种很好的实现。
原生WebSocket API使用起来不太方便,我们使用Socket.io,它很好地封装了webSocket接口,提供了更简单、灵活的接口,也对不支持webSocket的浏览器提供了向下兼容。
1)前端代码:
代码语言:javascript复制<div>user input:<input type="text"></div>
<script src="https://cdn.bootcss.com/socket.io/2.2.0/socket.io.js"></script>
<script>
var socket = io('http://www.domain2.com:8080');
// 连接成功处理
socket.on('connect', function() { // 监听服务端消息
socket.on('message', function(msg) { console.log('data from server: ---> ' msg); }); // 监听服务端关闭
socket.on('disconnect', function() { console.log('Server socket has closed.'); });});
document.getElementsByTagName('input')[0].onblur = function() { socket.send(this.value);};
</script>
2)Nodejs socket后台:
代码语言:javascript复制var http = require('http');
var socket = require('socket.io');
// 启http服务
var server = http.createServer(function(req, res) {
res.writeHead(200, {
'Content-type': 'text/html'
});
res.end();
});
server.listen('8080');
console.log('Server is running at port 8080...');
// 监听socket连接
socket.listen(server).on('connection', function(client) {
// 接收信息
client.on('message', function(msg) {
client.send('hello:' msg);
console.log('data from client: ---> ' msg);
});
// 断开处理
client.on('disconnect', function() {
console.log('Client socket has closed.');
});
});
插入排序--时间复杂度 n^2
题目描述:实现一个插入排序
实现代码如下:
代码语言:javascript复制function insertSort(arr) {
for (let i = 1; i < arr.length; i ) {
let j = i;
let target = arr[j];
while (j > 0 && arr[j - 1] > target) {
arr[j] = arr[j - 1];
j--;
}
arr[j] = target;
}
return arr;
}
// console.log(insertSort([3, 6, 2, 4, 1]));
如何阻止事件冒泡
- 普通浏览器使用:event.stopPropagation()
- IE浏览器使用:event.cancelBubble = true;
图片懒加载
与普通的图片懒加载不同,如下这个多做了 2 个精心处理:
- 图片全部加载完成后移除事件监听;
- 加载完的图片,从 imgList 移除;
let imgList = [...document.querySelectorAll('img')]
let length = imgList.length
// 修正错误,需要加上自执行
- const imgLazyLoad = function() {
const imgLazyLoad = (function() {
let count = 0
return function() {
let deleteIndexList = []
imgList.forEach((img, index) => {
let rect = img.getBoundingClientRect()
if (rect.top < window.innerHeight) {
img.src = img.dataset.src
deleteIndexList.push(index)
count
if (count === length) {
document.removeEventListener('scroll', imgLazyLoad)
}
}
})
imgList = imgList.filter((img, index) => !deleteIndexList.includes(index))
}
- }
})()
// 这里最好加上防抖处理
document.addEventListener('scroll', imgLazyLoad)
代码输出结果
代码语言:javascript复制console.log('1');
setTimeout(function() {
console.log('2');
process.nextTick(function() {
console.log('3');
})
new Promise(function(resolve) {
console.log('4');
resolve();
}).then(function() {
console.log('5')
})
})
process.nextTick(function() {
console.log('6');
})
new Promise(function(resolve) {
console.log('7');
resolve();
}).then(function() {
console.log('8')
})
setTimeout(function() {
console.log('9');
process.nextTick(function() {
console.log('10');
})
new Promise(function(resolve) {
console.log('11');
resolve();
}).then(function() {
console.log('12')
})
})
输出结果如下:
代码语言:javascript复制1
7
6
8
2
4
3
5
9
11
10
12
(1)第一轮事件循环流程分析如下:
- 整体script作为第一个宏任务进入主线程,遇到
console.log
,输出1。 - 遇到
setTimeout
,其回调函数被分发到宏任务Event Queue中。暂且记为setTimeout1
。 - 遇到
process.nextTick()
,其回调函数被分发到微任务Event Queue中。记为process1
。 - 遇到
Promise
,new Promise
直接执行,输出7。then
被分发到微任务Event Queue中。记为then1
。 - 又遇到了
setTimeout
,其回调函数被分发到宏任务Event Queue中,记为setTimeout2
。
宏任务Event Queue | 微任务Event Queue |
---|---|
setTimeout1 | process1 |
setTimeout2 | then1 |
上表是第一轮事件循环宏任务结束时各Event Queue的情况,此时已经输出了1和7。发现了process1
和then1
两个微任务:
- 执行
process1
,输出6。 - 执行
then1
,输出8。
第一轮事件循环正式结束,这一轮的结果是输出1,7,6,8。
(2)第二轮时间循环从**setTimeout1**
宏任务开始:
- 首先输出2。接下来遇到了
process.nextTick()
,同样将其分发到微任务Event Queue中,记为process2
。 new Promise
立即执行输出4,then
也分发到微任务Event Queue中,记为then2
。
宏任务Event Queue | 微任务Event Queue |
---|---|
setTimeout2 | process2 |
then2 |
第二轮事件循环宏任务结束,发现有process2
和then2
两个微任务可以执行:
- 输出3。
- 输出5。
第二轮事件循环结束,第二轮输出2,4,3,5。
(3)第三轮事件循环开始,此时只剩setTimeout2了,执行。
- 直接输出9。
- 将
process.nextTick()
分发到微任务Event Queue中。记为process3
。 - 直接执行
new Promise
,输出11。 - 将
then
分发到微任务Event Queue中,记为then3
。
宏任务Event Queue | 微任务Event Queue |
---|---|
process3 | |
then3 |
第三轮事件循环宏任务执行结束,执行两个微任务process3
和then3
:
- 输出10。
- 输出12。
第三轮事件循环结束,第三轮输出9,11,10,12。
整段代码,共进行了三次事件循环,完整的输出为1,7,6,8,2,4,3,5,9,11,10,12。
即时通讯的实现:短轮询、长轮询、SSE 和 WebSocket 间的区别?
短轮询和长轮询的目的都是用于实现客户端和服务器端的一个即时通讯。
短轮询的基本思路: 浏览器每隔一段时间向浏览器发送 http 请求,服务器端在收到请求后,不论是否有数据更新,都直接进行响应。这种方式实现的即时通信,本质上还是浏览器发送请求,服务器接受请求的一个过程,通过让客户端不断的进行请求,使得客户端能够模拟实时地收到服务器端的数据的变化。这种方式的优点是比较简单,易于理解。缺点是这种方式由于需要不断的建立 http 连接,严重浪费了服务器端和客户端的资源。当用户增加时,服务器端的压力就会变大,这是很不合理的。
长轮询的基本思路: 首先由客户端向服务器发起请求,当服务器收到客户端发来的请求后,服务器端不会直接进行响应,而是先将这个请求挂起,然后判断服务器端数据是否有更新。如果有更新,则进行响应,如果一直没有数据,则到达一定的时间限制才返回。客户端 JavaScript 响应处理函数会在处理完服务器返回的信息后,再次发出请求,重新建立连接。长轮询和短轮询比起来,它的优点是明显减少了很多不必要的 http 请求次数,相比之下节约了资源。长轮询的缺点在于,连接挂起也会导致资源的浪费。
SSE 的基本思想: 服务器使用流信息向服务器推送信息。严格地说,http 协议无法做到服务器主动推送信息。但是,有一种变通方法,就是服务器向客户端声明,接下来要发送的是流信息。也就是说,发送的不是一次性的数据包,而是一个数据流,会连续不断地发送过来。这时,客户端不会关闭连接,会一直等着服务器发过来的新的数据流,视频播放就是这样的例子。SSE 就是利用这种机制,使用流信息向浏览器推送信息。它基于 http 协议,目前除了 IE/Edge,其他浏览器都支持。它相对于前面两种方式来说,不需要建立过多的 http 请求,相比之下节约了资源。
WebSocket 是 HTML5 定义的一个新协议议,与传统的 http 协议不同,该协议允许由服务器主动的向客户端推送信息。使用 WebSocket 协议的缺点是在服务器端的配置比较复杂。WebSocket 是一个全双工的协议,也就是通信双方是平等的,可以相互发送消息,而 SSE 的方式是单向通信的,只能由服务器端向客户端推送信息,如果客户端需要发送信息就是属于下一个 http 请求了。
上面的四个通信协议,前三个都是基于HTTP协议的。
对于这四种即使通信协议,从性能的角度来看: WebSocket > 长连接(SEE) > 长轮询 > 短轮询 但是,我们如果考虑浏览器的兼容性问题,顺序就恰恰相反了: 短轮询 > 长轮询 > 长连接(SEE) > WebSocket 所以,还是要根据具体的使用场景来判断使用哪种方式。
0.1 0.2 === 0.3 嘛?为什么?
JavaScript 使用 Number 类型来表示数字(整数或浮点数),遵循 IEEE 754 标准,通过 64 位来表示一个数字(1 11 52)
- 1 符号位,0 表示正数,1 表示负数 s
- 11 指数位(e)
- 52 尾数,小数部分(即有效数字)
最大安全数字:Number.MAX_SAFE_INTEGER = Math.pow(2, 53) - 1,转换成整数就是 16 位,所以 0.1 === 0.1,是因为通过 toPrecision(16) 去有效位之后,两者是相等的。
在两数相加时,会先转换成二进制,0.1 和 0.2 转换成二进制的时候尾数会发生无限循环,然后进行对阶运算,JS 引擎对二进制进行截断,所以造成精度丢失。
所以总结:精度丢失可能出现在进制转换和对阶运算中
事件总线(发布订阅模式)
代码语言:javascript复制class EventEmitter {
constructor() {
this.cache = {}
}
on(name, fn) {
if (this.cache[name]) {
this.cache[name].push(fn)
} else {
this.cache[name] = [fn]
}
}
off(name, fn) {
let tasks = this.cache[name]
if (tasks) {
const index = tasks.findIndex(f => f === fn || f.callback === fn)
if (index >= 0) {
tasks.splice(index, 1)
}
}
}
emit(name, once = false, ...args) {
if (this.cache[name]) {
// 创建副本,如果回调函数内继续注册相同事件,会造成死循环
let tasks = this.cache[name].slice()
for (let fn of tasks) {
fn(...args)
}
if (once) {
delete this.cache[name]
}
}
}
}
// 测试
let eventBus = new EventEmitter()
let fn1 = function(name, age) {
console.log(`${name} ${age}`)
}
let fn2 = function(name, age) {
console.log(`hello, ${name} ${age}`)
}
eventBus.on('aaa', fn1)
eventBus.on('aaa', fn2)
eventBus.emit('aaa', false, '布兰', 12)
// '布兰 12'
// 'hello, 布兰 12'
JavaScript为什么要进行变量提升,它导致了什么问题?
变量提升的表现是,无论在函数中何处位置声明的变量,好像都被提升到了函数的首部,可以在变量声明前访问到而不会报错。
造成变量声明提升的本质原因是 js 引擎在代码执行前有一个解析的过程,创建了执行上下文,初始化了一些代码执行时需要用到的对象。当访问一个变量时,会到当前执行上下文中的作用域链中去查找,而作用域链的首端指向的是当前执行上下文的变量对象,这个变量对象是执行上下文的一个属性,它包含了函数的形参、所有的函数和变量声明,这个对象的是在代码解析的时候创建的。
首先要知道,JS在拿到一个变量或者一个函数的时候,会有两步操作,即解析和执行。
- 在解析阶段,JS会检查语法,并对函数进行预编译。解析的时候会先创建一个全局执行上下文环境,先把代码中即将执行的变量、函数声明都拿出来,变量先赋值为undefined,函数先声明好可使用。在一个函数执行之前,也会创建一个函数执行上下文环境,跟全局执行上下文类似,不过函数执行上下文会多出this、arguments和函数的参数。
- 全局上下文:变量定义,函数声明
- 函数上下文:变量定义,函数声明,this,arguments
- 在执行阶段,就是按照代码的顺序依次执行。
那为什么会进行变量提升呢?主要有以下两个原因:
- 提高性能
- 容错性更好
(1)提高性能 在JS代码执行之前,会进行语法检查和预编译,并且这一操作只进行一次。这么做就是为了提高性能,如果没有这一步,那么每次执行代码前都必须重新解析一遍该变量(函数),而这是没有必要的,因为变量(函数)的代码并不会改变,解析一遍就够了。
在解析的过程中,还会为函数生成预编译代码。在预编译时,会统计声明了哪些变量、创建了哪些函数,并对函数的代码进行压缩,去除注释、不必要的空白等。这样做的好处就是每次执行函数时都可以直接为该函数分配栈空间(不需要再解析一遍去获取代码中声明了哪些变量,创建了哪些函数),并且因为代码压缩的原因,代码执行也更快了。
(2)容错性更好
变量提升可以在一定程度上提高JS的容错性,看下面的代码:
代码语言:javascript复制a = 1;var a;console.log(a);
如果没有变量提升,这两行代码就会报错,但是因为有了变量提升,这段代码就可以正常执行。
虽然,在可以开发过程中,可以完全避免这样写,但是有时代码很复杂的时候。可能因为疏忽而先使用后定义了,这样也不会影响正常使用。由于变量提升的存在,而会正常运行。
总结:
- 解析和预编译过程中的声明提升可以提高性能,让函数可以在执行时预先为变量分配栈空间
- 声明提升还可以提高JS代码的容错性,使一些不规范的代码也可以正常执行
变量提升虽然有一些优点,但是他也会造成一定的问题,在ES6中提出了let、const来定义变量,它们就没有变量提升的机制。下面看一下变量提升可能会导致的问题:
代码语言:javascript复制var tmp = new Date();
function fn(){
console.log(tmp);
if(false){
var tmp = 'hello world';
}
}
fn(); // undefined
在这个函数中,原本是要打印出外层的tmp变量,但是因为变量提升的问题,内层定义的tmp被提到函数内部的最顶部,相当于覆盖了外层的tmp,所以打印结果为undefined。
代码语言:javascript复制var tmp = 'hello world';
for (var i = 0; i < tmp.length; i ) {
console.log(tmp[i]);
}
console.log(i); // 11
由于遍历时定义的i会变量提升成为一个全局变量,在函数结束之后不会被销毁,所以打印出来11。
new 一个构造函数,如果函数返回 return {}
、 return null
, return 1
, return true
会发生什么情况?
如果函数返回一个对象,那么new 这个函数调用返回这个函数的返回对象,否则返回 new 创建的新对象
对对象与数组的解构的理解
解构是 ES6 提供的一种新的提取数据的模式,这种模式能够从对象或数组里有针对性地拿到想要的数值。 1)数组的解构 在解构数组时,以元素的位置为匹配条件来提取想要的数据的:
代码语言:javascript复制const [a, b, c] = [1, 2, 3]
最终,a、b、c分别被赋予了数组第0、1、2个索引位的值:
数组里的0、1、2索引位的元素值,精准地被映射到了左侧的第0、1、2个变量里去,这就是数组解构的工作模式。还可以通过给左侧变量数组设置空占位的方式,实现对数组中某几个元素的精准提取:
代码语言:javascript复制const [a,,c] = [1,2,3]
通过把中间位留空,可以顺利地把数组第一位和最后一位的值赋给 a、c 两个变量:
2)对象的解构 对象解构比数组结构稍微复杂一些,也更显强大。在解构对象时,是以属性的名称为匹配条件,来提取想要的数据的。现在定义一个对象:
代码语言:javascript复制const stu = {
name: 'Bob',
age: 24
}
假如想要解构它的两个自有属性,可以这样:
代码语言:javascript复制const { name, age } = stu
这样就得到了 name 和 age 两个和 stu 平级的变量:
注意,对象解构严格以属性名作为定位依据,所以就算调换了 name 和 age 的位置,结果也是一样的:
代码语言:javascript复制const { age, name } = stu
HTTP 1.0 和 HTTP 1.1 之间有哪些区别?
HTTP 1.0和 HTTP 1.1 有以下区别:
- 连接方面,http1.0 默认使用非持久连接,而 http1.1 默认使用持久连接。http1.1 通过使用持久连接来使多个 http 请求复用同一个 TCP 连接,以此来避免使用非持久连接时每次需要建立连接的时延。
- 资源请求方面,在 http1.0 中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能,http1.1 则在请求头引入了 range 头域,它允许只请求资源的某个部分,即返回码是 206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。
- 缓存方面,在 http1.0 中主要使用 header 里的 If-Modified-Since、Expires 来做为缓存判断的标准,http1.1 则引入了更多的缓存控制策略,例如 Etag、If-Unmodified-Since、If-Match、If-None-Match 等更多可供选择的缓存头来控制缓存策略。
- http1.1 中新增了 host 字段,用来指定服务器的域名。http1.0 中认为每台服务器都绑定一个唯一的 IP 地址,因此,请求消息中的 URL 并没有传递主机名(hostname)。但随着虚拟主机技术的发展,在一台物理服务器上可以存在多个虚拟主机,并且它们共享一个IP地址。因此有了 host 字段,这样就可以将请求发往到同一台服务器上的不同网站。
- http1.1 相对于 http1.0 还新增了很多请求方法,如 PUT、HEAD、OPTIONS 等。
数组去重
使用 indexOf/includes 实现
代码语言:javascript复制function unique(arr) {
var res = [];
for(var i = 0; i < arr.length; i ) {
if(res.indexOf(arr[i]) === -1) res.push(arr[i]);
// if(!res.includes(arr[i])) res.push(arr[i]);
}
return res;
}
使用 filter(forEach) indexOf/includes 实现
代码语言:javascript复制// filter
function unique(arr) {
var res = arr.filter((value, index) => {
// 只存第一个出现的元素
return arr.indexOf(value) === index;
});
return res;
}
// forEach
function unique(arr) {
var res = [];
arr.forEach((value) => {
if(!res.includes(value)) res.push(value);
});
return res;
}
非 API 版本(原生)实现
代码语言:javascript复制function unique(arr) {
var res = [];
for(var i = 0; i < arr.length; i ) {
var flag = false;
for(var j = 0; j < res.length; j ) {
if(arr[i] === res[j]) {
flag = true;
break;
}
}
if(flag === false) res.push(arr[i]);
}
return res;
}
ES6 使用 Set 扩展运算符(...)/Array.from() 实现
代码语言:javascript复制function unique(arr) {
// return [...new Set(arr)];
return Array.from(new Set(arr));
}
position的属性有哪些,区别是什么
position有以下属性值:
属性值 | 概述 |
---|---|
absolute | 生成绝对定位的元素,相对于static定位以外的一个父元素进行定位。元素的位置通过left、top、right、bottom属性进行规定。 |
relative | 生成相对定位的元素,相对于其原来的位置进行定位。元素的位置通过left、top、right、bottom属性进行规定。 |
fixed | 生成绝对定位的元素,指定元素相对于屏幕视⼝(viewport)的位置来指定元素位置。元素的位置在屏幕滚动时不会改变,⽐如回到顶部的按钮⼀般都是⽤此定位⽅式。 |
static | 默认值,没有定位,元素出现在正常的文档流中,会忽略 top, bottom, left, right 或者 z-index 声明,块级元素从上往下纵向排布,⾏级元素从左向右排列。 |
inherit | 规定从父元素继承position属性的值 |
前面三者的定位方式如下:
- relative: 元素的定位永远是相对于元素自身位置的,和其他元素没关系,也不会影响其他元素。
- fixed: 元素的定位是相对于 window (或者 iframe)边界的,和其他元素没有关系。但是它具有破坏性,会导致其他元素位置的变化。
- absolute: 元素的定位相对于前两者要复杂许多。如果为 absolute 设置了 top、left,浏览器会根据什么去确定它的纵向和横向的偏移量呢?答案是浏览器会递归查找该元素的所有父元素,如果找到一个设置了
position:relative/absolute/fixed
的元素,就以该元素为基准定位,如果没找到,就以浏览器边界定位。如下两个图所示:
如何根据设计稿进行移动端适配?
移动端适配主要有两个维度:
- 适配不同像素密度, 针对不同的像素密度,使用 CSS 媒体查询,选择不同精度的图片,以保证图片不会失真;
- 适配不同屏幕大小, 由于不同的屏幕有着不同的逻辑像素大小,所以如果直接使用 px 作为开发单位,会使得开发的页面在某一款手机上可以准确显示,但是在另一款手机上就会失真。为了适配不同屏幕的大小,应按照比例来还原设计稿的内容。
为了能让页面的尺寸自适应,可以使用 rem,em,vw,vh 等相对单位。