大家好,又见面了,我是你们的朋友全栈君。
1
代码语言:javascript复制import urllib.request
url='https://www.baidu.com/s?wd=海贼王'
res = urllib.request.urlopen(url)
UnicodeEncodeError: ‘ascii’ codec can’t encode characters in position 10-12: ordinal not in range(128) 原因:url包含不是ascii的字符 处理:把“海贼王”改为% 十六进制(法1:百度,法2 urllib.parse)
2
代码语言:javascript复制import urllib.request
headers={
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.72 Safari/537.36'}
url='https://www.baidu.com/s?wd=海贼王'
res = urllib.request.urlopen(url,headers=headers)
TypeError: urlopen() got an unexpected keyword argument ‘headers’ 原因:urlopen()不支持重构User-Agent响应对象 处理:先用urllib.request.Request(“网址”,headers=“字典”)创建请求对象
3
原因:POST data should be bytes 字符串参数没有编码 处理:
代码语言:javascript复制data = urllib.parse.urlencode(data)
data = bytes(data)
req = urllib.request.Request(url,data=data,headers=headers)
4
原因:被反爬 处理:使用正确的代理IP
https://blog.csdn.net/winterto1990/article/details/51217363 5
代码语言:javascript复制import base64
/*
* 提示:该行代码过长,系统自动注释不进行高亮。一键复制会移除系统注释
* url = 'data:image/jpg;base64/9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC ASUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4 Tl5ufo6erx8vP09fb3 Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3 Pn6/9oADAMBAAIRAxEAPwD3 ivPNS1bUJdPlW2XWIJZ550EExgZ4mwMplZDkA5IIJwGA7Vd8P63d2Wi39zqC3k32C3VmR9gYkKSQPmJyeMZxQB21FcPqV14igvb/Vfs2qWlklsh8qKS1fGzeWbDk9iOnpU r6tqVsohtdYij2W48w3GiT3DuxGdweJ0QcEcAcEHnsADsaK4Xwrq2p3un6fBd6zHIk1oqjydGuIpQxQYbzndkyPUrg0zXZdR0fxLpVqmq65c2k9rdTTpbpC8i W0IDAbMkASNkAEnjAoA72iuH1C6iNlpk1tr11d2lxcPula7WDpE FLoF24YDIIyCMYzxXKXOoapB4f1W4k1PUY5LfT7qaOctcxqZlVygjJkZWA25ywGRt4OTgA9jorh/Eev3507xBFb3OnWwtN0S75mWU/u1bcMdPvcfSpdS8RahBZ6lEtxYNLHps1zHNZuWKMm0DIOR/F lKTsrl04OpNQW7djs6K8t/te WGCAXOvLM9zsuws0MsxHkGUeWfuKMEE 2e9Ra/4hktvDVguma1qkEt gWOC9MJdkZjmV5D90EHAO4AYHTBrneJik3Y9eOSVZTjBSXvPz89dL9vu7Hq9FeZaHrl5LqmnaWNcvCsjeWn76yuOFUthim5uQOp596ojxbq41DUzFqFrK90lwDAWZfsQh VW64GRljgZJFH1mNr2BZHWcnFSW1 vd Wmz 63VHrMjFY2YKWIGQoxk 3NUrqVUjYsu7A3BfUjkVgeFb3UvPvtLvr2C9Sxt7dormNWzKHDHcxLHJwo596xfiDqSwaTArPKJXmTaYi6nggt8oIz8oPBNbwlzK55mIoOhUdNu 33NXX4Mt/8JpYzR7por AKoacfZ2YRZB Vio47Nn3HNXbXXNN1PcLK8hnZQCyo43KPcdRXjuqanNeK ZZUF2TNIo67XbagOGBPyhVPXp0rUj1S5j0TUrqS4k 1OywJKpJJCcL7/fZqowO91LxFYaeXSWR3lQZZIo2YqM98A449cVVk8Q2K6bHe3Mn2SNwSq3GFY/hz9a83nkEkkcCfbrm1UF2BXyQ0mRgnoT35OT0qCWaUab9ghIjiuLgmUqcg8/d98KOfpQB3sPimwmtYZZC2 WLzMQqZBGM/wARUHHcdualh1SzvmZbWfzSv3sKR3rgI9UuRdvdvetEZAULIqlWCgY657l nrXWaVc3ctmDdEbyckAbcjPynHrg/rQB6boMirotvyxJD8844c/gOv4/hVRPEVjd6zPp0LO0sEZZnH3Cd2Co9SCOfSqcInl8JxwW832eSQMDKFyVBY5I98dD2rn7qODTby2vEnS1gt42iKtwHDHPJJ65596ANiXxboonngnujbyI 1xco0YDYBGN3HTBGPXNRyeJdGZlRdStXdyAqLICWPbAHWvPLbVXO 8Muo28t07TF4gJUYMePlw2MDA6DpV3Rr4rDeXzM0zvIQrmMKxVRjGAB33du9AHS6h4n0q1n8s3HmygldsKGQ59OOh4z FZkXjbT3jSacTW/wAwU74CVDDsTjBP/wBevN9SvRLeAhMRISqLIVPJ5JOdwJ65OByabYXKxwlHgt5M/wALsAfqOP60AfUekyxzaNYyxOHje3jZWHRgVGDVysvw1j/hFdHwu0fYYcKDnHyDjNalABRRRQAUUUUAFFFFABRRRQByNx4PuL3UfNu7yJrX7XLcLEIEbYGXA rBie5wMcY7kw6b4V1GLTtStLiLTok1CdFliXbKnkAYcYEUalmGRgrgZzk4xXXedJ/z7S/mv8A8VR50n/PtL a/wDxVAHGj4a6KSUfSdEMTNcKSNLgDBH5jIIT7yfdHYjrk1pnT9fjlSdDp80r2EdtOGkeNRIpYllAU8Hd09q3/Ok/59pfzX/4qjzpP faX81/ KoA5/SNL1q2u9JW9WyFtYWT25aCZ2Z2xGASpUD A9 9XrvSp5/Fml6qrRiC0tLqB1JO4tI0JUgYxj922ee461pedJ/z7S/mv/xVHnSf8 0v5r/8VQBla3pd5dyWL6cbeJoJpHk8wsuQ0bqSCvO7LA5rmb7wZr8unaxb29/ZFtRsZrRlmUYJdSAxcJv4yepI56V3fnSf8 0v5r/8VR50n/PtL a//FUAZWueH7XUdJ1GKCztftV1Gw8x4xkuQACTjPQDn2pus Hob3R762sIbW1urm3aATeUBhWxkHHY4rX86T/n2l/Nf/iqPOk/59pfzX/4qk1dWZdObpzU47rU51/CVvDqNtLYQW1ta28E2Io02l5nUIGOO23d dV7jwlNc GNG00tClzaNbCeVSQSkZ YKcdeTjIrqvOk/wCfaX81/wDiqPOk/wCfaX81/wDiqj2MNTqWYYhcr5tV/wAH/NnJQ ELyDxVZXqXIawtHZ182YvIxKFcbdoA5J5yah03wjq9nqtvcT3NhNbQm82whGyPOOQCf4h69Mds12fnSf8APtL a/8AxVHnSf8APtL a/8AxVT7CH9f15FvNMQ1Z22tt6/j7zOa0TQ7rSjqN1f/AGGA3KwQpBZ58uNI8gDLAZJ3elZfiawXUrZoiSY3HVT1H1rtpnkkiZRbS5Puv NZlxYTzD/j2J5H3mX/ABrSMVFWRyV60q83Unvp CseTX gM7B44oRMpGxnj3bQOg68VB/YlwulxW4lAlSTzd23ILbt3T616lPoFzIDtgAPbLD/ABqtJ4Yum6Qgf8DFUZHmT6XeTE felVA5EMQQfmc/wA6guNFUwRoNyomSNp9Qe/4mvTv EUve0Sf99imy Er98Yjj6c/MBQB5SugF8geaQn3O4jwM5A gNdNp4nhtBHM43nh1AI5Hf8AU/rXTyeCb9nJSKMDPAMgJpw8IauhwhTABVT5mODnj9T dAGjpKeZ4ft8HB fBPTO49RVDVrJJImQxhlPUEcVuabpd7Z6bFbSQ5dM5KsMckn196WTS7yUfNB6/wAYoA8ru9Btt UtRG2OfKJXP1xiqNppLQac8RZxI6kH5yQMnPAr1G48M3kwOIVz7uBVVvB98RgRx/8AfYoA8duNDbeMlmPYjC/ypBowQYdJAeD949K9bbwNftn91Fn/AK6Co5PAuqSDBSEkYAJk6D0oA7Xwynl FNHQfw2MI/8AHBWrVDTUms9LtLV7eQtDCkZKlcZCgcc 1WfOk/59pfzX/wCKoAmoqHzpP faX81/ Ko86T/n2l/Nf/iqAJqKh86T/n2l/Nf/AIqjzpP faX81/8AiqAJqKh86T/n2l/Nf/iqPOk/59pfzX/4qgCaiofOk/59pfzX/wCKooAmooooAKKKQmgBaKge7hj6yDPoDSR3SSkhT04qeeOw7MsUUgpaoQUUUUAFFFI2QOKAForwP4jeN9UOvTw6fqlzbW0J8kfZp2jyR1PBGc/4VxWi/EPxbpV9DdSazf3MLOV23Nwzo3Q4w2fUduOTx1oA saK53wd4rtvFujC hGyRTtljz909iPYjnv3HY10VABRRRQAUUUx84OM5oAfRXByfEjTYpCpulJBwVMTZHtgd6if4l6axwL1UPtC f5UuZGXt6fWR6DRXnZ Itht41Nh/wBu7f8AxNIfiNYAD/iaH/wHb/4mlzoPb0 6PRaK83PxIsDwdTP4QN/8TV/QvGNjqutQWkN/LLJIWwhVwD8pPcYppp7Aq0G7Jnc0U1TzWV4jne305GSV48yhSyOVOMHuKmpNQi5djVamvRXGJc3uxNks7DHBNyefzp87X7W8kf2q6gd1IEm8kLx168muT67HsXyM7CiuV 13O8RCeXKqOVkLAgADJPv15560/wC0XRAzPL/32ar65HsTY6eiuXa6uQP9fN1/vmo2vLjn/SJhyf4zR9cj2Cx1lFce95dBM/apv /hqq1/eY/4/LgH/rof8aPrkewWO6ooorsEFFFFAFO9vVtIixySBnviuan1ma4k2F5RnGwqowc5OQM89scV095bieAr0I5Fca9ssMzbsjewQFjwF69PQA8ew9CMcdeUk7G1NJli3uHkcZLfN2ZSp/I/5xitKKQxyhh171jpKz7XQIuY1Kq0h XLZ3DOMrtJPTPA6dBy3ivxffWBCWsiWqkcyrh/mPHJ4Xb3BOOo4GCTlHc0kj16GVZVBB59M1LXmHw38S3t2L23vZonERUo4UDPYgkdcfJ15 b349LikEi7h R7Gu2Er6M52rElFHeitCQpkhIjJHUDOPWmTXVvbDM88cQ9ZHC/zqomt6ZM/lw6javIeAqyqST7c0XA XtfZXnMkpBBk3EAZGM8gf54zisGK9jhsYrebDItxgeylTn9cflXQePbWXRtXvbSaXLRyFVOMFk7Eg8YI6e2M1wLPLeS7lGfm4XI/wAikI9U8BeLp/Ct8ZZpM2TkKYhycbjux74249xX0jZXkV9axXMDiSGVA6OOjKRwa KQbuCymW5QhsDYZHwCCeSB346n698V7H8EfHbKX8OX8qKhctaO5wQxOWQ/U8j3yO4oQz3yimI249R0zT6YBTT06ZpTSH7poE2fO2sJdXviDWktoZXP2qQ74oyxU Y2DxyOh/Oqk1peOy7tIuBkESFYWyfcHPXGce K6XRGzJrl1yRLcdAMk/ebgDknnoOTXP6lrD3GqT2cI2tkqWMuxowDhs5XOBhskEkAHOOK87nk27HLg8NOVO8dtShcWV5FLhdMvDg4ObdhnpTF0/Uf4tOuwM9oWNTprt9d6msNtO0xVFTfEWfJGRk84xk9eQeOakGo6tc3xNpfbpZlKiDziSoZQwIBPJxgDn L64Oad7BLKJN3dyfRdLa4nla sZl2qNiSKybm9vXgdPeu48AWUFl47kjiAVjp0jOgbIB8yPHB5Hf8 9cTomuXdzqxt7rUoTA7Om15g2whgcj164BGc54yAcd94OkJ J2owAKkUFgVRAOmWjP R29Kzpxn9YUm9CvqqwyjFx1vueoDrXP L5zbaZbOHK/6SozjP8LV0AFZXiG/s9P09JL2NZInlEYVgDkkE9/oa68ar4eavbQ7KfxI5C58RLPHHGHEMirtZkfBar9hcyzQ7JJmbCgIwKZz61zc p2Ty7RYpHH5hXzXJKEdsEf1IqKS3ihVJorpoRngLna3484r4j29aNTWR6XsVa5uaNr8N5rUmnPG8NxzmJ1wCR3B g5BA/Hmum8nJwBwK8 8L28c/iyzl2O94okM7qNysfmG/PYY2ge5rsH8U2NvBGtwHN0XaNoIBuIIYqT1AxlfrgivocPVvD3ziqxSehf8jPaoZLXJOBWmi74UkZChIyVPUZrO1DUrWwjZpJEGwgFiwCrlgOSSB3zjO44OFY8V1cl9UZWKUltjIIqjJBz/AJNcr4h Jlpaq0ENuLiUqMbZnjUNkYI 67jkZ 5xnqKk8LzS OIp7jX7TBXDRQK7LGFJODtAABGDgkkkEj E0nTajdlRjfVnslFFFeuZBRRRQAjDI5rm9eswZBKCyAnJZTgqfUHBwffFdKaq3luLiB04yw4NY1o3iVB2ZxCRMq/vpFhRmMis0Y2qRzu6lQByRzjnHJGKnlgtL5lhkgimztOHTgZyxwWBVuBjqeMnsaV4WttTi3qDglU TP3sA49B0JP yOvSi3nUlJRLG9uSWEezAIYfKM4AACYABzn071wXszpepd07T4rUTacIl8kr5qIOFIzygH yduDjpgdq2YHkRuGJI65/jH NULZA80cjtloSRlWyp3Dhc56YIIzgnANWZLiKGVF5dz90Yyfy7fX9a1jKzuZtGtG 9QfWud8deJx4S8NvqQTfIXEUY/2iCf6VtWJmZC8qqpbkAHPHuemfz przj4 Bz8PoPLzu 3x9P8Ackrui7oweh57B8XLPUp4otX0GS44AkmDrMzHjJCsBjPXGeK04IfCHiASB7K 0uaZig8yN4uD3A5jA teXaTrlpotgZYY/NvHzncOnPr1xUMvjDV7yXEl28UZP3YTs/XqadkI9Y1/4f3Op6NBFbXv9o20HyWzO 2aOMY QSfdkAwcA7cZwGAAFcRbeC/K1BLKa9hs5sj9xODE5JOON3Dcg/dJHuap2WvajH5UqXlyWVsrIf3jofZvvL9RzXY2XjK7ghaz1 xGoWWNsiSKCyYIwPm4bAzw/JPO89CAa198Mvtfheazjwb2NN9u7Z4cZwOwAPTnI5rxG2up7G73xjBVsFCe4I9 vT8q9102LT9UDSeDPEU lXse4vYFsxoc/Putn 7gsFyuAD0ya8w8ceGNestWudR1OxRBO3mSXFsGaBnPVs9VJJAwQOSe1JMD3f4TfEKPxXpzWF3Iw1OzRQ/mMuZl6bhzkkcA8f3T3r0wHIr4r8J Ibnwr4kstVi3FY2xKg4EkZOGX39u2dp7V9kabeQ39lFdW8gkglQPG46Mp5B/LFUMummN90080x8bD9KBS2Z4docfn HtQxtzJcMMuAVHydSGIBGD0PB6VzsFuBqV3PbST3G9miWKREVWmI34bBBIznjAxng u5oE4TQpQSMfalzn0IwSK5TUJtRulaG5ljEJYlVRVLe3OMivJjNKbRGExnsKNr6FsaVd2t/Fv05XBjZ1cxKfNZxk71AIUDDcAHHfrmpLHT7qe hlSNH xrs8tmZmKiMKR5fIG4kEDPc tYralespV5mlVFOCQDjgjOD9a0tO0sXsdtN9tcfaQ5uQh5K5zgDHPXng/XoTtdJXOyOY1KiujWtfDRi1Q3R81FR2mYtdM2Q2QPl2g5yRnJP3D1zmu18GL/xdbWj0xZ4wfrF/n8a5Dw6iR3k8bSzFSocGRjggnr19c5 orsfBJH/CztbA7WoA mUqaM aa06nLia860oOfRnqArh/irpUur F7WCGRY5EvVkBJx0Rx1/Gu471yPxGuPs3h 2kJuABdqD9ni3t9x 3 ecDkkA9OLU3Qlyb2NqTSmmzwe6i8Q6XlQ8 wdGxuB/Hn dXNKi12 1P7NPdLA8KrI6zyBOCcKDjoSfl69a2/t qSSRiLTZtpwUEsBByc9R6dD3xvB bGKvtNNbmGC80iLaTskcCMLsLEbSzAKuMZUHAYnGRwq XRw14/vkr h1zrdEdn4S8MWek6W32ae4hvmO6SXfuIODgYOVI Ynpz17CoNGj0dvELQP9qj1WSR3kZ2UEvktnGOAcE47dBVGDxTHbKbay097med38ydZBa aqgfOpIyQVU5I4 XOeRUFhosNjqNncrdwRXspLhvPLK5ZAzYbuMeoU85xgrVzpyglZXRzPVnpVzbia2ELyuEYFWZSVYjHZl5U9ORXhfjrSZdD1mK0hkC2MkbmKeUk QMtuRQx7fzPU173tV05wQwwecg1yHi3wbP4hlg8mWEIgYMZuSdxXtt6YBP1A o6paJWRMXrqeFWdlcXd5KNIAlaXar3TDepUdcc4Y/N93p0GR0PpHgTwrfNavqD6jeRSOo8u43KRITgtkYIYcA57556V22keAtF00l3gN1I3DG4bcp4Axs 7jgdRkeprqFjUdBxUSjOb12Lc0tieiiivTMAooooAKQjIxS0UAc14ksBMqyYGxv8AWZAIwPUHrxXLrcm3vX 0COFYQA0rNg/KSUI25UDAPHDdW44r0DVFdrGQRJvkONo9Dnr HX8K5C28DyS3wnvZQcNuzjp7KOgxj8 e9cNSk fQ6ITXLqRWl1dXxEemB1twFXfIqnpgZUYyenc10lhoYiPmzySFyuG c5PuT/nitKysLeyjCQoBgYJPJNW8CtoUEviIlUvohkaLGAqKqqAFAHYDoK5f4ieGJfFfhZrG3l2XEcqzRA8BmAIwfwY11dBGa6DI Kte8PXOlXbW93BNbyKfmDKQCcf5x7fjWPHZkS5VgVHYDJr7a1PQNM1dAt/ZxTgfd3oDj6VhRfDTwxDL5i6cmc98/wAqAPAPAngy/wBZ1eB/JdYI2Du5H5Y9K98k8FWN5YrBdW6yBQQCRyPoa6iz061sIRDbQRxRgcKq4FW8UgPnfxd8Ib yuV1DRJpC0RV0CZEilemMc8dsciuf034i JPDcgsdftmv7VcIXfiRQMD72Oen8XPuK pJYkkXDgEHiuU8Q BdM12Flnt0MhGA4HPtRYDxk GvBvjqBrnw9cLYXpG57ULtXA2/ejzwOcbkOASeteg/DTV5tFSPwdrMgTU7dS1sWbK3EWTjYepxz8pCkDHBwTXnviH4OanpMkmoaPM2 D97GIyRICvPy47/AORzXL6Lqurxa9p/iPUnvbyGylRJZ0l/eRKD9193ABB h3Ebic4QH16ar3rmOzmcc7UY8ewNWGGRWbr8xt/DupTKSrR2srA hCE05LRiaT0Pn7U9Qs9Ds7a1gzc3EqGTKH5CQxQnJ5xlSB9M98nCn8QXt1lV8qLjosYJ/M5/nV29/sxtO03F15t7JB5bh0 S1Uyu2c4yScg8DueoPC2tjo0LsJdVtSgQgHypXyx qcD6V5PsYp3sepBYPBUYOcbt9zdtnNnbxJfWrSzqgMkieWozjITlu2QD faktdSsNRjuJIRtkiZVIMak5bjcTkjqf0P1OLe3ELx3L/2zbyTTKUziUYXuPuc9vyFZj2VobdFg1giUxkSNtkbLE5P8AzzmqjRi9zy5Vabk7M9E0Z4ZY/KMSRhgCMZAY44GcYB4rV8Bvv8AitrRH3fs0g/J48f1rgfCMZ0mWcpP9qhk2/OqMpY jA9ecflXf/Di6ifxtfRoP3k1q88jf8DTA/I0UqkFVUE7syqK8os9ZFef/F7VINI8Nabc3IkMB1FY3MbAEAxS88j9RgjqCCBXoAryv4/7B4Dsi6qf JlHjdyAfKl7d/px9a9Rq6sbJnNz67Fc6UJf7XW9ecyTbRbiaUDqqiNxlMBh1yMZIyMGoLuSO1uLe3uZprjYFMjSfIiYwVl2JuKnIYHcgLKoOTg14pGWtpEkhOyVDvDhuQwPBVh3yMjH4muj0/xRqF4IdGvL2LyjPkXd35r7OP7mdpzyfmXOTyR2xdNo0UkdrqmoxQgvb30drCbSOFdswlaIDuoKhlbIPA YbuB0xn22l6rq2mC/1ETjTynnxX1xGZ5JGKgsOPlOcclwx6gZYFRc8JWnhu7kvri5v/7QvJh5QySrtudlzjbhVIA7cbh6V3EkEjiJBYW8pt2BE8KNbGT5CMbMn5SNvz7jkYHOQKjbcowvCV7fWQXTrXVJbQ6dlmlgt3eBwyNkyAsFYEgYYAkeuOa9CtfH0FlFIviIR2gV5FjuolZoZQrYz04OMHglfmHzZOBwF1p1nbxfZIJYbeNJGgimASYpI25sDCjGXyDuOOmcAnFC3fVYLL7XOWtbyU XHHGNxZwpL7lK5RgcFWHI UEHjCW2hLR79aXVveQrNazxzQsMq8bhlP4irHevnDTvE9z4blfUYc2kb4S5Eb XG8iqMMo2kEt1xzzu4GTXVQfHhEikN1oFwSrcMhKgjseVP9KadxWPZ6KKK6iAooooAKKKKAA0mBS0UAFFFFABRRRQAUUUUAFFFFABRRRQBHJCki4ZQR7141490X/hB9aXxZpaRva3UoivrJuFlznkfzOe9e01zvjLwoni7w/NpbXX2YyMrCXy9 0g mRnjI696QHRGud8b3jWPg7U5I4nllkhMMaIMlmf5Rge2c/hXRVFPbw3MRjmjV0PYimTJXTR8nXehas4JXSb8HqcQNWcdF1lODp16v8AvQkfzr61Ogaaf Xc/wDfbf40x/D2nMm1Y2T3DZP65rD2COiniasaapztJLuj5FjS9JdVRwUYq/H3T71NBE8citM5bHRQc5/OvqSPwNosDSNbwmFpTukMSopc pwvNSnwhpxx8844x95f8Kl4dPQmdadrU0o iPm HxQ9lBHFb2iEqP8AWZG5vc59K7P4S60lx4 YzRrC9xZPFGFXG5gVbHHH3UP5V6yfBenM2WknbHTJXj9K0bDQrLT3DxKzyDgPIckD VKlhYU5cy3OT2dRyTm7mivJzXK/EHS9J1jw/DY6xCJYZLkeWN5Vlk2PgrjqwG7jBzzkEZrrK5zxp4V/4S/R4dP 2/ZPLuFn3 VvzhWGMbhj73XPat583K Xc6Fa p85eI/hJqmnebdaFJ/almScw4xcJyeMdHA4yV5PPyjFefIwhmw6vuT5cZ 6Rx/P/Ir610n4f6lpvyy JDdIPul7PDg/72/kfX86Z4i E jeKIy2ovtu Nt5BEEl46buSHHGPmBIHAIrODqbSQ2l0PlhmlgjWWOSSFiuCeccg8K3XBB nuc11Ok Pr/SrgLHbQ3MMMewC4IOwA9VI 5wegP5kA16Gf2axxjxZgZyR/Z2fw/1vSnn9m9ZCzSeKQzEADGm7QMY7eZWjgmCkQReL9G1 1065EzaWbSQST22UiVUXONr4KEYYfKACQWypHI5bW/FEV032PS4PtSmSSKK5bfsfeeeAep/3sYJG3HJ7GH9nJoOV8WZPqdPP9Ja0I/gGqv8/iIPD5gmaH7GwV3BJGT52cYJ4BB561Hs2PmPE7u7u7x4zeCU SfJQSDChlByuG75K5GCecHjGZreZIoFvbG4Rj92S3lYw7uP7ybNx4/HGa9hPwCnZog3izEcRJSNNO2hcnPA83A5A7dh7Yav7PFuokH/AAkCFX7GwIx Uoq W2wrnttFFFWSeYfHfVtR0bwJa3GmX11ZTvqCRmW2maNipjkOMqQcZA/KvnQeOvF//Q1a5/4MJf8A4qvf/wBoj/kntmB1/tOP/wBFS18xJjcN2duRnFJj6G9/wnXi/wD6GrXP/BhL/wDFUjeOvF/H/FVa5/4MJf8A4qsJsbm2525OM009RSGjof8AhOfF2P8Akatc/wDBhL/8VT4vHHi4tg Kdb/8GEv/AMVXO0qkq3BwaCjqH8b LPMwPFGtcf8AT/L/APFVA3jnxd5hx4p1vH/YQl/ KrC88liSOTTCckmkDOotfGvi1uW8Ua0frfy//FV9nV8LWwCwF8j0xmvumqRDCiiimIKKjllSJMs6r9TXHeKPF o6Pq2nWmn2MM8Fykkss0jMDEI8F/lOOzLjJGSwHHGSwHa0lYur IodH0y5v54ZmitkLyKoG7A6/wBM n6V57rvxmtbfSft2mmKdHQNEPPjjLHOCMMd/wD4775pNAesyyxwrukkVF7ljgVy pfEfwppF2tteaxEJi2wpGrOVPuFBIHv0rxrRdT1f4oXk1veeITYRqM VCGVdgBJZn5zwD8ucHHbqNHxP4L8I HfCF1YaW7XWuzqoiu5SS3yupby1XjHGMgcBuWx1Bnt2tSyRWaNG7IxkAypx2NYC3d2MD7XMQOpMhrd10Zso/8ArqP5GuOleY6pHbxuYo2jJLAjG7jjnqcZ4FbR2O/DRUoal0ancySvAl5MZEBDjzDkZ6fzH5VR1/Vr6y0m7lS8nXy4WKt55UlsYxnPHPT3rM2Sx6zI9vARIPmwZMqq7eOegyc/p14FVNQ1CK50bUotTjMkQtnkfauMKq549cdiM4PfNNNJo7ZYdct10PNpvGXiO20/Y2v6s06qxd/tshw 7kZDdgoH/Aq9T8G6nrEul3Md5qV1cNHOYopmnZiwVI1Jzn 9u/HPvXP GPD nWumWmtarKkdxJGG2tthQLkbQTwW6L1JHPTueui1zQxsih1OxG1dqIlxHxjoAM9Pp VXJHJGMY6yRF4v16903wubqK ukmlkjVCkrAglwx79Nu78q4jXPEXiKKH7KNY1GKe1EKyOl24Lny2GOD1yMn6itXXvEGlyPDdXFws0BTNlZYba5/56PtPflQGyu3cTntyETXPirWI7m3huFE12rZVSUVcYY7uTwAOvPPWtIpKLuVDlvsey6Tdaj/ZVmZ724kl8tfMYyHJOPr9a6vW8nTigkkjEh2Fo5CjAEEcEEEH6c nNcjK5trKR0j3si/KoJyfyBP5An2PSuv1n/j0T/roP5Gud2ukc MVrNeZxWla1e6fqh0LVb2drhy0lrO8pIuEz79GHcDIGeMAqo6IXVwf W8v/AH0aytZ0dNZ08Qecbe4jdZba5UAtBKPusM9epBHcEjvUGha0 o20tvdLFFq1o/lXcCtwG7OuedjdVJ nBBqtDhN77RcY/wBfJ/32aPtM/wDz3k/77NVQW3gO5Vc8dCT169vT39advUsdrA45xnPWiwyY3dxjiaU/8CNNa mjyzXDLH6mQk/lTCM46c1Tnkjhzt/eSKOFGBzjPXoMgfmaVgNQXM5GRPIR6hzinC4nHJnkx6ljXPaLqEz6hd2NwEA/11sV6Mn3WXoOVO0nk8v1IxjI J2qHS/CkbC6uLXzrpYvNt5vKYfI7Y3YPB2 lJger0UUVkM8j/aK/wCSf2H/AGFY/wD0VLXiOj/DHxdrthBfWGlF7SZd0cjzRpvGcZAZgf0r6Y JGg23iHQ7K0uoWliS9Eu0MQAfLkAJwQT97 WeM1m6FapodglnIrC3DFUEbEBB2B5HToMdhnvUSlYasfOWs/DrxXoFs1xqOkSJCuS0kbrKFABJJ2EkDAPJ4/SuYI59 /tX2fex2txat9njknkJyg8w4Q9jyenHoa ZvFnw9vdCle4sg91YEEpJwSMZyCB6DOeBgAngCpjIq3U4kYzzSnAPymnxW8s8yQwxSSSvwqINxb6AVtad4Q1rU1aSOyeOJc5aU7cH06Z/SrdhGDRX0Svwh8HXWi26i11KKcIN9zBKWZzjqVIYDPsvFeZ PfhvN4SRr20uTcWDSbVEibZIwckBuxwByeD7VKkmUjgq K B/8APFffFWiZCHpWde6gI5BDEw8zq3PQVot0x6mvKPFPiOHRfFz2F1df2fdMDJbS3PMF5E5zglQfLZW3LkjkDP8AEKqO5D2OgTWpofFjadfTWojuEBs1Dnz2YAlsjpjg8nb0xWB8Vb8WPh HULUyC6jkWINEWyqsyucgEAqTEoweeevY07uS8utRtLw2ubmNSqSwMjhlYdAQSSOfbvxVO81O9t8/abS9RR1dgkaj1OZHUelacqJcr7I7jTtah/sOw3qIZBbR7oghTYdoyNp5XHPB5 tY9y3hq1me9Ol6ek5JZpltk3EnrzjOTWFpcV9rEYlgityjAuhS5 0MwBwRtiG3Oev7ytbVfDX9kabZ6gbh5dRluIIbaRod0UDSyKgYplR/Fj JhuGDgGjRE3kZdromnXev2thZaRBb62y3F8PLYRG2jJVAXK8ncGyMgkZIwO/oPh/wRpeiyfaHT7XfcZuZxubjGOpPIwOSSfp0rH8KXzv8UfFenXEiEW9rZiyQRgYi2sz4IHI3vk5JPI9K9A71m9zRGXr/APx4J/11H8jXC63eG0WLa5RXJyBnc2OcDj0BrutfGdPUf9NB/I1yl3YW16U86LzPLIIxkfy6j2PHtWkNj1cFJRjqefR JLiHUWll2KCPKYW2IpCBjOPU9D7/AJCumimjvNHSXR5I5WONzn7/AD1zg59Bjjp19eI1iy8jUr6BAUiDs27ajKf4gPmXOcEcZ6 3NUtB1u60jXjOimW1lx5iKn8HHOMZz6nnoeTiuudK6TR6NV8rTS0LGt3lzpmpRsEFxdNklZI12uQcBuB1zk47YyTS3niTVJraJjOLe1uXBKxYQSDp8uDvHzAg9/QnNehzWmn6mtrd3ENpd25woMyK S2MFcg87toxx174ArN8R Gf7WlTyYcJDGreWMojcMAAR6cZBAGB15NSptaM5qnvyd9jlby58zRLjVIIk8xJXF0sJ8sx4XAbIAC5YZwODvI68i14Yu2XWomtWP2edFjAePO7ggk4xj2HI4Iye r4S8OzRW99HeFZIZwVkXafnY43EqRg45B7c47YGhF4Vt9Ib7TZmeVUlDsu0SMy98EYJ Yb/rnrnBUp30IpQUNGdRkDGAR/Dnt7j/Pr2rf8Si9/s1GsPs5lWUEpPuCuNp43DO05xzhuh45yMCM YoOTgqCN/DY7ZBxjr3FP KXixfB3hD 0RAZp5JhBbrxtEhRyC3IO0bTnHP8AOueWjRxYvoZU3iy306ZLfW4ZNKdvl86U74WJz92VflUHB5k2njgVyHiKz/4RnU7fxX4fFvJp1w JsvtTcxwSH7I5xgngPtbIV3B5fw/8Wora3Eeu6fJczSlFe8YhmeMEh8gj6gAZHzHpyTYvfFngN7V5dE/tPS7y5wj28KJHC42sB50ZJiZDkE5DcfjQ2cVj1mwvodTsIr2BCYpE4Zm2lPmO4N02kN1HOCCCOCKSbXLW2uWtERp51O0pEFAGMZy2cDG7ocHg4z38Y0fxF/ZUE8E8SXFhKiO0 l3DR79gxJJ5TdXxs3KCnyjdgqWNemeG/EvhHVYre3sryGGbC Xbzx XJyueA33u/IznPX1Exm1crLeRAzSTJFj544AcEEY4wN5wSeVK/lUN3I8AVlQeWpBbC5w2Qeg4HJ654PuasrbXuplit41pZE/u/IVWkmI4LbmBAU4IwASQAc9qo65pV1pOmTalpF5IZLOJpXtbgh0mRQSVBxuRsZ2kEDPUYPDAz0k x IdH1A3zOksjW2TtKmN1AUKV45kER hqL4vwTP4Mgmt22yW19FMpyBjhkzz7vVPWbme38PwalCkc8izRXotwNgIV93GeAFxyw9M85q78Sdc0y4 H84inhn 2GNooySpYCQNnb1wCBn0B96TYmew0UUVkM5fxxaR32nafbSxtJFJfIGAI4 V/m59Dg/h0PSsm4tNSvI7uMW0EkDgYeQMuR2G056c9hzjrkYtfE2/TT/DtrJIyqr3gQlmAA/dyHv16YxXIaXrcV1YmOQXSwwnCLaO8PHOMFWTOcdB6j8c5XuZyim3c7G2iurbTFsElBuzku8EfCDOcbTkL1wAfqM4OMXW47fTdAmubi7Q5LSO6naFcA9BnAAKtkDPT2NXDZ28awusmoMwIPzXs AO 75zn0x6n8a8l JnisTzy6TZr5bFh9pdQFY7eAGI6nv WOME5O7djWMEtibwQLDXG1eOwVLd5Loyyog/ePH8pB5HCkg/LyAfqM99Y2EOnXiLFaQJF5ZlmnlwJFjAPDd8fKOSAMHp1NeA HLma01hfJd1aQEDaSDwQeMEYPccjmvfNLu7tT9slaGeeSAQGRnMbqN5Y4YZXA3cDZk4GWNXbUmatsaSatDBEk1hcW6W7sys24KQcklgpyCSc5475yc1B4x0KLxHoDx37SzxqgIijC8OP Wg4zuAJ7kcHIPNXHGlC1Mh0uWAxyjLyQCYyjOSwEZZu/cDHoASafNDbaktndSBU8gq6RbJFZCMHjcFI/75HAGRSdkEOdK71PmzxR4Kv/DYFxkT2jEYmUYKk/3h/Ijg 2cD7QYkLkV85/EjxDp9tFe2QjEjTRPGtuQdxJB/ecjG1eCCM8gY7lfo2tIO6Kfoc14zv9dsNE87QrBryXePNEeDIseCSyKfvHIXjuCcc188 LLC81UL4hvbTUoLeEiOW9mt2kLENt5GcDDHHzMuQRgHGK q8Vz3jnRP Ei8D6zpSwedLPav5Me7bmVRuj5/3wv9eKsRi/CWeS7 H2nT but/wB4kCfKSqK5XDEAZOVY5wOG9s1T Nek/wBo/DPUXWNpJbRkukUdtrAMT/wAtWJ zvqX2jwZf6e8xeS0vWIQnOxHVSPzYPXpviLThq3h/UNNLiMXdtJb7yPu71K5/WmB5f8AAHUPtXg2aBwP9FvXVBnOAwDZ/NmrtPiCCvg/ULiM4ktEF7H7tCwlUfmn6145 z9fCDVtXsHcq7pHIqHttJDcf8CWvbfFN3p9t4fu5dUliisREyTtI3GDwR6nOcYHcjHNMk5q2Bt/jrBcmP5L3QXhDqOrLMrEn8No/KvSwa8w Gt43ia/t9VBMkWk6eNOknYAie5cRPLtOc4TYozj5vM4JAyfUKTGjL14ZsY QP3o6/Q1zTj5TzkHt2NdLr3/AB4p/wBdR/I1zLyIhClhvOSBnritYao9LDfwzkvGdlaRwjUWnkhuNyhShAU hPQ9AwznuK8 LwOWieaVDIMkbAAxxgncecHjB579a7zxsGVLWQFljG8bjlQpOOT/AJ7etef2Gny6nq8EceEiY/PgHk7sHnGcYPfsG6fdrtpv3LnqrSkjXtfFGoaLFBpiMbjyZDLJtxu2AH5eRxzznHPODmtM/Ea5WKZoNMWOKNW/10j79/Ixkj5jwPzFZN7CkFtfl1ZfL1Bba1wMBUUYyOOOGBJHXOcZrNMUF qSmNfOQ7g/que/vwfxHTmmoRkrmcI8 q3Oy0L4gWTL5dzbSRAMS8hJbGSfr/PvXbWd9bahAs9tOs0YOQynp9eBzXjTWJR/MVzkHryrHnoTnP8AXoDnrXZeDtIvor5L4CNLR927gAvxjkD3GaidJJXuXPDpRbkzvc7hkEFawvj9PDbeBbCSe2WdP7UjGxiR/wAspeRjv9c1vDPBCj65rS8caHpGv6LDba3AJrWK4EwUysgDBWGcqQTwTxXHNao8bF9D4/0/SdZ8T38i2FlPdzMxaRkHCk/3mPA/E16jo/wIklt1l1nVDFMT80NsA23npuPX8vzr1jTFW2iaC0iggsI8JbxRQ7BGBkNnnB YHsO/Xqbckvl7eHeRh97aCPbP48fjQo3OK9tWeP3fwetbO8jbSdYuIpIvmHmqku49sLxwSGBDZ69 lZeqeHtZ03SotNt0SdhIW/sy6iSRIQwyfKZslQcMQQ2cCQdY2ZvX7N1jjScQRxLKzgSGQSFsO2MHJyDkkc8cjA4zj LmtZtNMk0gh1OIbrdy20kjDbC3TnaCOu0gMAStDjbyGmnsZfhW/sNP0 0lbxFd6RPHEDdWOqA QZMbfkMmBtypwEfnGOMGtmL4keHdQnutN/tC0aXDIrJIWRwSFUcqCzNk8KGAxye9ZCXsupaZBqV2vlo IJHkwMMHG5dpB2E45X2GGYfPXP65oHhlFg 22tujSMdrIrgYwAR8uDgfLjr9Bmleyuyo05TklFXZ1OrI0c0MV1ArBsCJUQHzAcK3GOQBzxjIAOARzx7aFYadqj6nq8BueNzWx5UdwScHcGI7YGCwyQeKuiXkNlObHTr3UfsfSO0ursLFMCeRgjbGeQevOCOMim6vf2Omlr3XZVvtTV3UadD/AKuMbQcOTjaBkr/e4xwBUKalszavhatB8tRWPqOiiikc55P 0FuHgKxZc5GpxnIHT91LXmngvXdO yrb3euXlhOsexi8RmQMCcFdpyvbquOOp616b 0AwXwHY7gCDqcYOf8ArlL7GvnRJ0 VW3bV 6vp tRJ9DWNJTR6T4m8eyWFu1to ry3kzN81y8GxFXGPlVmZs9PQDPfIx5rJM9xI0szs7sdzM5yST1NWw1pK67ygwMYAx/UfzqaPTraZWeK4jLKCRGu8n9Aw/Ws9DRUrbGarGORZY22yIQyt6H1r0DSPGVyLaOSS2MaE4WcFiokB 6oBwcnB7da5aTw1crDGUeOaSXiKOCWKVifQhX3A/8AAas2kuveErhljE1tLKmJIXiIBGO4lXafyNUmRUpOSPYNJ8R2wtgPtFuIwoOIgz87iDjuT/s4yOCQMjNDxh49t9JtHitXjmupAQiK2SPdvTnt/Pt5prPi2 1S3Ft9jsoCq5Z7O2QO3QklxkqT324HtXMiJ2RmIPy9flP6fpQ9TOFLl3Kmp3d3fXst3dyvLLMdzOec/wD6q 7q Fbk WgKEkj7wP8AhX3VWiE9wpG6UtFMR5lq/h3WfB3iS/8AFnhOzW hv1LalpIba0jjJEsTd2yT8uCTuOOSNuPqfx6sbOOa2fw3q66nEQslrMFRUPcFwWI7/wAPavZcCk2r6D8qAPjHTtf1s M7zU/DkAs7 9kk22tvH5hIZtxVVYNzkDt9B2rv7H4Z OvH95Fd KtQns7HO/bdMfMUHdwkIwEOVGeF4OeelfR AOwpcU7isZmg6JZeHdGtdI06Py7W1j2ICck85LE pJJPuTWnRgelFIZl69/x4p1/1g6A hryHV764uNZnR4zmM/6NIDgxtjpxjjcpzn1HX H1TxddrZaMsrFf9aAAzYBOD35/kfpXi80bCSa5SNnSWVpPmUOG3ElhwAcEcbuCS2M4ANduHVo8zPYy F4XsdZfu2rWlvYLGBcXOCXK5WIAKWI6E8MB269RTNJ8N2WhyGVnWSXhY5GULtHXjOeevP1985dxr81hYJHgyTxAoJTE OABuyAQSck4yOCcmsieRnAnuIZ7sEkmQy8J0H/ACz6DIJ5P41UYykmnsdjhPlcVsP8fmWS9APEMaKQwwQwJ6n06tz7VQ0HR5bnUreJIMIrjcE5CoAMknsfkwD7V2mo6LZ3K6RaTqd7koOrF41UsQTycenPetzTdHtNMRktIBEGO5myWJxzyTzx2Huap1FGIvaQhG63GQaNp9tc/aYbWOOVh1UcfgOgPHUetaC4QYAx6c1Xur61so91zcxQBuQCwGecfjz/ACpljqVrfxmazuY51xyUbP49sD8KwtJ6s5m5PVlxR/eA/Cug8QyxRWMQlmji3yhFMjABmIOAPf6Z lYBboQAfp0p3xQ0u71bwbNDZLA06M0ipNAsu/EbjaoYHDHOARzWUt1Y4MX0sc5NqFsmqvaWWp2xm3nzmmuP3lsxKqsQTqCWyRnuQDneM8P4g1e7u7uS2nmkMVvIy4ZslmBI3HAAz16YGOgxXk41ONngeS2XfGMNIAOSDkNjoGPQnkH0zzWtD4u8s XLbKYhgII2I8tMcLg8nAAHXPuetehl2Io0qjlVR5WKp1JxSgzv9I1n x2upnl2RNbu2TjG5VLJweM5AH0Y tQWya34wmlu7aMtZrKUaeVtiODjrkkgAxg7FzkN2H3vPtR8Ry6jGLaOIRRscsWPLY/kM8/1r0r4c KLV7EaRcSwwXCtutyZMefk/j83I4z/ACrzuIMeoxdXDxvb r2NsvoSUeSoyWLR/FOgW o3cd1p7wShZJ7bLFcpgiRdwHzDABBwrDg9qyNYxq1vFcaZbTSW8ckpeQDhjlc4P8XzbuRx6Y5r02WeBdkEhVvNyioFLZ45yOSAB1JwAO4ry/X/ABbaG6FzaXymCB8W0UOAFOBluOg/qB2zXgZTja NhKFZW63tp6HrKawlWNWGtjn8Yx3z0/p tMvda2M5PlzXqbUE7FTsUKABuIPYgcYK7Md8DD1K/S8uWk86fbIxyg4Gf8n/ADmqCRyXc6W9uju7thIlG4sx6AAdycCvWpUOR7nTmearFw5IxskfeVFFFaniHJ/EHwWfHWgwaYNR weVdLceZ5AlzhXXbjcP7 c57V5v/wAM5jv4pH4adj/2rXulFKyGpNbHhf8AwzkgbK KSPrYZ/8AalPH7O5Gf Kq/wDKf/8AbK9xopciK9pJdTxUfAKdYREPF8gQHIUWOAD9PMp6fAe6ifdF4uMZ9U04KfzEma9noo5EP2s 54u3wEkdiX8UK5bqX0/cT JlNMP7PqkHHiXBPcWPP/oyva6KOVB7SXc8Nl/Z181Cp8Vde50/JH/kWvcqKKaViG7hRRRTEFFFFABRRRQAUUUUAZHiHQk8QWEVq8oj8uUSglN4yAR0yP71ctD8MQl59ol1ffxtKLahQFwRgDccda9AorRVZqPKnodFPFVqceWDsvkeen4WW/niZdQVJByHW2 bOAOfm5HGMVai G9vb3a3UN9sk2bGTyMxt6kjdn1713FFNVppWuU8bXe8vyOXfwpdmEGPVIkuQxxKLTIK7cYK789cHqKoX3gnWLuxlhi8SrazShVaSKyOABvztBk UncvIOfl9 O3orOUnJ3ZH1mr3POL74VyXhtydefMMXlBnhcscksTlZF/iZj6Y2jtk6WgfD1NCinA1WW5lm275JIlHTOMYPuepNdrRWjrTatcPrNW1rmJ/wAI/wDNk3Of 2f/ANetG s/tsCx Zsw27OM54Ix tWqKzcmzOdSU/iPG/FPwBtPEGuTalaa5/Z/n/PLELPzAXPVh864z/PmsX/hmf8A6m7/AMpv/wBtr36ii7IPAR zOR08Xf8AlN/ 21Mn7OEsUiyx MWWZSGWQaedykdCD5vB4Fe8UUnqFzx7UvgnqWqMZJ/FtuJnh8mWZdGQSSDuS3mZBI4JGMjg1hn9mjJz/wAJdz/2Df8A7bXvtFKKUVZDbbPAh zRg5/4S7P103/7bXceDvhBpHhBRPHP9r1HnN3LDgrkYwgydoxnuTyeccV6LRVXEFFFFIAttCQAsiQotwsxujAwSy0JzgD/2QoK'
*/
img_data = base64.b64decode(url) # 返回的是二进制数据
print(type(img_data))
binascii.Error: Incorrect padding 原因:经验 处理:去掉data:image/jpg;base64
6 . print(soup.select(‘title’).string)
AttributeError: ResultSet object has no attribute ‘string’. You’re probably treating a list of elements like a single element. Did you call find_all() when you meant to call find() 原因:select()返回的是列表 解决:print(soup.select(‘title’)[1].string) 7. requests.exceptions.ConnectionError: HTTPSConnectionPool(host=…port=443) 详见HelloWSFc的博客 8.
代码语言:javascript复制# driver.switch_to_frame(driver.find_element_by_id('iframe'))
# select标签
selectTag = Select(driver.find_element_by_class_name('nojs'))
selenium.common.exceptions.NoSuchElementException: Message: no such element: Unable to locate element: {“method”:“css selector”,“selector”:”.nojs”} 原因:类为nojs的标签在iframe标签下 解决:
代码语言:javascript复制driver.switch_to.frame(driver.find_element_by_id('iframe'))
# select标签
selectTag = Select(driver.find_element_by_class_name('nojs'))
注:
那条杠仅仅表示switch_to_frame方法过时了,但还可以用 9. interactable:可交互的 driver.find_element_by_id(‘wrapper’).send_keys(‘六翼’) # div标签
selenium.common.exceptions.ElementNotInteractableException: Message: element not interactable 原因:div标签不能输入内容 10.
代码语言:javascript复制from selenium import webdriver
driver = webdriver.PhantomJS()
原因:没有配置驱动会报的错误 Message: ‘phantomjs’ executable needs to be in PATH. 解决: 找到驱动的绝对路径 或者添加到path环境变量当中 一劳永逸(可以添加到你python解释器的文件夹(Scripts)当中) 11.
代码语言:javascript复制driver = webdriver.Chrome()
原因:selenium模拟的客户端欲对浏览器操作,但相应浏览器的驱动版本不匹配 解决:跟新驱动,并复制到指定地址 12.
代码语言:javascript复制from selenium import webdriver
from selenium.webdriver.support.ui import Select
driver = webdriver.Chrome()
driver.get('https://www.17sucai.com/pins/demo-show?id=5926')
driver.switch_to.frame(driver.find_element_by_id('iframe'))
selectTag = Select(driver.find_element_by_id('dk_container_country-nofake'))
selenium.common.exceptions.UnexpectedTagNameException: Message: Select only works on elements, not on
原因:不能用Select方法操作非select标签的下拉框 13. Python关于None的报错:‘NoneType’ object is not iterable和cannot unpack non-iterable NoneType object selenium.common.exceptions.NoSuchElementException: Message: no such element的解决方法 14.
代码语言:javascript复制import requests
from selenium import webdriver
import time
driver=webdriver.Chrome()
driver.get('https://xui.ptlogin2.qq.com/cgi-bin/xlogin?proxy_url=https://qzs.qq.com/qzone/v6/portal/proxy.html&daid=5&&hide_title_bar=1&low_login=0&qlogin_auto_login=1&no_verifyimg=1&link_target=blank&appid=549000912&style=22&target=self&s_url=https://qzs.qzone.qq.com/qzone/v5/loginsucc.html?para=izone&pt_qr_app=手机QQ空间&pt_qr_link=http://z.qzone.com/download.html&self_regurl=https://qzs.qq.com/qzone/v6/reg/index.html&pt_qr_help_link=http://z.qzone.com/download.html&pt_no_auth=0')
driver.find_element_by_class_name('face').click()
#time.sleep(2)
list1=driver.get_cookies()
cookie_1=[i['name'] '=' i['value'] for i in list1 ]
cookie_fianl='; '.join(cookie_1)
print(cookie_fianl)
url = 'https://user.qzone.qq.com/2023203294'
headers = {
# 'cookie':cookie_fianl,
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36'
}
html = requests.get(url,headers=headers)
time.sleep(2)
with open('测试.html','w',encoding='utf-8') as file_obj:
file_obj.write(html.text)
# print(html.text)
time.sleep(2)没有写时,发现cookie_final错误 所以以后要记住time.sleep(2)要勤写 15.
代码语言:javascript复制inputTag = driver.find_element_by_id('kw')
# 定位百度一下的按钮
buttonTag = driver.find_element_by_id('su')
actions = ActionChains(driver)
actions.send_keys_to_element(inputTag,'浩哥')
time.sleep(1)
# 普通点击行为不要在鼠标行为链里面出现
buttonTag.click()
actions.perform()#这一行报错
selenium.common.exceptions.StaleElementReferenceException: Message: stale element reference: element is not attached to the page document (Session info: chrome=90.0.4430.212) 原因:普通点击行为在鼠标行为链里面出现 解决:把他移到行为链外面
(下载图片的 Images Pipeline) item[‘image_urls’]=‘https:’ li.xpath(’./a/img/@src’).extract_first()
ValueError: Missing scheme in request url: h 原因:属于内部的构造的问题 要通过源码分析(门槛高) 解决:(加个括号)
代码语言:javascript复制item['image_urls']=['https:' li.xpath('./a/img/@src').extract_first()]
selenium.common.exceptions.ElementNotInteractableException: Message: element not interactable 如果你的xpath在谷歌控制台能够定位该标签,那么在pycharm里面报这个错误(元素不可交互)有可能是元素没找到。 最直接的方法就是强制加等待几秒钟就OK了。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/157529.html原文链接:https://javaforall.cn