坐标系旋转变换公式图解[通俗易懂]

2022-09-20 09:25:01 浏览数 (1)

大家好,又见面了,我是你们的朋友全栈君。

而您一旦用以下这图解方法,随时眼见显然,再也不会搞错。

平时开发程序,免不了要对图像做各种变换处理。有的时候变换可能比较复杂,比如平移之后又旋转,旋转之后又平移,又缩放。

直接用公式计算,不但复杂,而且效率低下。这时可以借助变换矩阵和矩阵乘法,将多个变换合成一个。 最后只要用一个矩阵对每个点做一次处理就可以得到想要的结果。

另外,矩阵乘法一般有硬件支持,比如3D 图形加速卡,处理3D变换中的大量矩阵运算,比普通CPU 要快上1000倍。

下面是3类基本的2D图形变换。

平移:

设某点向x方向移动 dx, y方向移动 dy ,[x,y]为变换前坐标, [X,Y]为变换后坐标。

则 X = x dx; Y = y dy;

以矩阵表示:

1 0 0

[X, Y, 1] = [x, y, 1][ 0 1 0 ] ;

dx dy 1

1 0 0

0 1 0 即平移变换矩阵。

dx dy 1

旋转:

旋转相比平移稍稍复杂:

设某点与原点连线和X轴夹角为b度,以原点为圆心,逆时针转过a度 , 原点与该点连线长度为R, [x,y]为变换前坐标, [X,Y]为变换后坐标。

x = Rcos(b) ; y = Rsin(b);

X = Rcos(a b) = Rcosacosb – Rsinasinb = xcosa – ysina; (合角公式)

Y = Rsin(a b) = Rsinacosb Rcosasinb = xsina ycosa ;

用矩阵表示:

cosa sina 0

[X, Y, 1] = [x, y, 1][-sina cosa 0 ]

0 0 1

cosa sina 0

-sina cosa 0 为旋转变换矩阵。

0 0 1

缩放

设某点坐标,在x轴方向扩大 sx倍,y轴方向扩大 sy倍,[x,y]为变换前坐标, [X,Y]为变换后坐标。

X = sx*x; Y = sy*y;

则用矩阵表示:

sx 0 0

[X, Y, 1] = [x, y, 1][ 0 sy 0 ] ;

0 0 1

sx 0 0

0 sy 0 即为缩放矩阵。

0 0 1

2D基本的模型视图变换,就只有上面这3种,所有的复杂2D模型视图变换,都可以分解成上述3个。

比如某个变换,先经过平移,对应平移矩阵A, 再旋转, 对应旋转矩阵B,再经过缩放,对应缩放矩阵C.

则最终变换矩阵 T = ABC. 即3个矩阵按变换先后顺序依次相乘(矩阵乘法不满足交换律,因此先后顺序一定要讲究)。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/167391.html原文链接:https://javaforall.cn

0 人点赞