大家好,又见面了,我是你们的朋友全栈君。
昨天和刚来项目的机器学习小白解释了一边什么baseline 和pipeline,今天在这里总结一下什么是baseline和pipeline。
1.pipeline
1.1 从管道符到pipeline
先从在linux的管道符讲起,
代码语言:javascript复制find ./ | grep wqbin | sort
inux体系下的各种命令工具的处理,可以使用管道符作为传递,这是一种良好的接口规范,工具的功能有公共的接口规范,就像流水线一样,一步接着一步。
而我们只需改动每个参数就可以获取我们想要的结果。该过程就被称之管道机制。
一个基础的 机器学习的Pipeline 主要包含了下述 5 个步骤:
代码语言:javascript复制- 数据读取
- 数据预处理
- 创建模型
- 评估模型结果
- 模型调参
上5个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果。
因此,对以上多个步骤、进行抽象建模,简化为流水线式工作流程则存在着可行性,流水线式机器学习比单个步骤独立建模更加高效、易用。
管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。
1.2sklearn中pipeline为例
sklearn也遵循pipeline机制,并封装到 sklearn.pipline命名空间下面
代码语言:javascript复制pipeline.FeatureUnion(transformer_list[, …]) Concatenates results of multiple transformer objects.
pipeline.Pipeline(steps[, memory]) Pipeline of transforms with a final estimator.
pipeline.make_pipeline(*steps, **kwargs) Construct a Pipeline from the given estimators.
pipeline.make_union(*transformers, **kwargs) Construct a FeatureUnion from the given trans
PIPELINE
sklearn中把机器学习处理过程抽象为estimator,其中estimator都有fit方法,表示数据进行初始化or训练。estimator有2种:
1、特征变换(transformer) 可以理解为特征工程,即:特征标准化、特征正则化、特征离散化、特征平滑、onehot编码等。该类型统一由一个transform方法,用于fit数据之后,输入新的数据,进行特征变换。
2、预测器(predictor) 即各种模型,所有模型fit进行训练之后,都要经过测试集进行predict所有,有一个predict的公共方法。
上面的抽象的好处即可实现机器学习的pipeline,显然特征变换是可能并行的,通过FeatureUnion实现。特征变换在训练集、测试集之间都需要统一,所以pipeline可以达到模块化的目的。举个NLP处理的例子:
代码语言:javascript复制# 生成训练数据、测试数据
X_train, X_test, y_train, y_test = train_test_split(X, y)
# pipeline定义
pipeline = Pipeline([
('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', RandomForestClassifier())
])
# train classifier
pipeline.fit(X_train, y_train)
# predict on test data
y_pred = pipeline.predict(X_test)
FEATUREUNION
上面看到特征变换往往需要并行化处理,即FeatureUnion所实现的功能。
代码语言:javascript复制pipeline = Pipeline([
('features', FeatureUnion([
('text_pipeline', Pipeline([
('vect', CountVectorizer(tokenizer=tokenize)),
('tfidf', TfidfTransformer())
])),
('findName', FineNameExtractor())
]))
('clf', RandomForestClassifier())
])
pipeline还可以嵌套pipeline,整个机器学习处理流程就像流水工人一样。
上面自定义了一个pipeline处理对象FineNameExtractor,该对象是transformer,自定义一个transformer是很简单的,创建一个对象,继承自BaseEstimator, TransformerMixin即可,
代码如下:
代码语言:javascript复制from sklearn.base import BaseEstimator, TransformerMixin
class FineNameExtractor(BaseEstimator, TransformerMixin):
def find_name(self, text):
return True
def fit(self, X, y=None):
return self
def transform(self, X):
X_tagged = pd.Series(X).apply(self.find_name)
return pd.DataFrame(X_tagged)
执行一个PIPELINE,加上自动调参就可以了,sklearn的调参通过GridSearchCV实现=》pipeline gridsearch。
GridSearchCV实际上也有fit、predict方法,所以,训练与预测高效抽象的,代码很简洁。
2.baseline
baseline这个概念是作为算法提升的参照物而存在的,相当于一个基础模型,可以以此为基准来比较对模型的改进是否有效。
通常在一些竞赛或项目中,baseline就是指能够顺利完成数据预处理、基础的特征工程、模型建立以及结果输出与评价,然后通过深入进行数据处理、特征提取、模型调参与模型提升或融合,使得baseline可以得到改进。
所以这个没有明确的指代,改进后的模型也可以作为后续模型的baseline。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/167460.html原文链接:https://javaforall.cn