2022-09-20 10:50:14
浏览数 (5)
题目211
设
f(x)=1-cos{x},求极限
limlimits_{xto0}dfrac{(1-sqrt{cos{x}})(1-sqrt[3]{cos{x}})(1-sqrt[4]{cos{x}})(1-sqrt[5]{cos{x}})}{f\{f[f(x)]\}}解答
当
x to 0 时:
[
1-sqrt{cos x} sim 1 - (1 - frac{1}{2}x^2)^{frac{1}{2}} sim
-(-frac{1}{4})x^2 = frac{1}{4}x^2
]同理,由此推导可证得:
1 - cos^alpha x sim dfrac{1}{2} alpha x^2[
begin{aligned}
text{原式} &=
frac
{dfrac{1}{4} cdot dfrac{1}{6} cdot dfrac{1}{8} cdot dfrac{1}{10} cdot x^8}
{1 - cos(f[f(x)])} \\
&=
frac
{dfrac{x^8}{1920}}
{dfrac{1}{2}[1 - cos f(x)]^2} \\
&=
frac
{dfrac{x^8}{1920}}
{dfrac{1}{2}[dfrac{1}{2}(1 - cos x)^2]^2}
\\
&=
frac
{dfrac{x^8}{1920}}
{dfrac{1}{128} cdot x^8}
\\
&=
frac{1}{15}
\\
end{aligned}
]题目212
[
text{求极限 } lim_{xto0}frac{tan(sin x) - x}{arctan x - arcsin x}
]解答
该极限为
dfrac{0}{0} 型极限,常用方法有:
- 洛必达法则
- 等价无穷小
- 泰勒展开
[
tan x - x sim frac{1}{3}x^3
quadRightarrowquad
tan(sin x) - sin x sim frac{1}{3}sin^3x
]由以上 等价无穷小,我们可以考虑 加减交叉项 凑出需要的形式
[
begin{aligned}
text{原式}
&=
lim_{xto 0}
frac{tan(sin x) - sin x sin x - x}{-dfrac{1}{3}x^3 - dfrac{1}{6}x^3}
\\
&=
-2lim_{xto 0}
frac{tan(sin x) - sin x}{x^3}
-2lim_{xto 0}
frac{sin x - x}{x^3}
\\
&=
-2lim_{xto 0}
frac{dfrac{1}{3}sin^3 x}{x^3}
-2lim_{xto 0}
frac{-dfrac{1}{6}x^3}{x^3}
\\
&=
-frac{2}{3} frac{1}{3}
\\
&=
-frac{1}{3}
\\
end{aligned}
]题目213
[
text{求极限 }
lim_{xto0}frac{sqrt[4]{1-sqrt[3]{1-sqrt{1-x}}} - 1}
{(1 x)^frac{1}{sqrt[3]{x^2}} - 1}
]解答
[
sqrt[4]{1-sqrt[3]{1-sqrt{1-x}}} - 1
sim
sqrt[4]{1-sqrt[3]{frac{1}{2}x}} - 1
sim
-frac{1}{2^{frac{7}{3}}}x^{frac{1}{3}}
][
(1 x)^frac{1}{sqrt[3]{x^2}} - 1 sim x^{frac{1}{3}}
][
text{原式} = lim_{xto0}frac{-dfrac{1}{2^{frac{7}{3}}}x^{frac{1}{3}}}{x^{frac{1}{3}}} =
-frac{1}{2^{frac{7}{3}}}
]题目214
[
lim_{xto0}frac{(3 sin x^2)^x-3^{sin x}}{x^3}
]解答
底数相同 的 幂指函数 相减,一般考虑 左提右式 或 拉格朗日中值定理(不推荐)
[
begin{aligned}
lim_{xto0}frac{(3 sin x^2)^x-3^{sin x}}{x^3}
&=
lim_{xto0}frac{e^{xln(3 sin x^2)} - e^{sin xln 3}}{x^3}
\\
&=
lim_{xto0}frac{e^{sin xln 3}[xln(3 sin x^2) - sin xln 3]}{x^3}
\\
&=
lim_{xto0}frac{xln(3 sin x^2) - xln 3 - (sin xln 3 - xln 3)}{x^3}
\\
&=
lim_{xto0}frac{xcdot [ln(3 sin x^2) - ln 3]}{x^3} -
ln 3cdot lim_{xto0}frac{sin x - x}{x^3}
\\
&=
lim_{xto0}frac{xcdot ln(1 dfrac{sin x^2}{3})}{x^3} frac{ln 3}{6}
\\
&=
lim_{xto0}frac{x cdot sin x^2}{3x^3} frac{ln 3}{6}
\\
&=
frac{1}{3} frac{ln 3}{6}
\\
&=
frac{2 ln 3}{6}
\\
end{aligned}
]题目215
[
text{求极限 }lim_{xto 1}frac{x - x^x}{1 - x ln x}
]解答
先处理分子:
[
lim_{xto 1}frac{x - x^x}{1 - x ln x} =
lim_{xto 1}x cdot frac{1 - x^{x - 1}}{1 - x ln x} =
-lim_{xto 1}frac{e^{(x-1)ln x} - 1}{1 - x ln x} =
-lim_{xto 1}frac{(x-1)ln x}{1 - x ln x}
]不妨换元,令
t = x - 1,则
x = 1 t[
text{原式}= -lim_{tto0}
frac
{tln(1 t)}
{ln(1 t) - t} =
-lim_{tto0}
frac
{t^2}
{bigg(t - dfrac{1}{2}t^2 o(t^2)bigg) - t} = 2
]题目216
[
text{求极限 } lim_{xto0}frac{(1 x)^{frac{2}{x}} - e^2[1 - ln(1 x)]}{x}
]解答
[
begin{aligned}
lim_{xto0}frac{(1 x)^{frac{2}{x}} - e^2[1 - ln(1 x)]}{x}
&=
lim_{xto0}frac{e^{frac{2ln(1 x)}{x}} - e^2[1 - ln(1 x)]}{x}
\\
&=
e^2 cdot lim_{xto0}frac{e^{frac{2ln(1 x) - 2x}{x}} - 1 ln(1 x)}{x}
\\
&=
e^2 cdot lim_{xto0}frac{e^{frac{2ln(1 x) - 2x}{x}} - 1}{x}
e^2 cdot lim_{xto0}frac{ln(1 x)}{x}
\\
&=
e^2 cdot lim_{xto0}frac{2ln(1 x) - 2x}{x^2}
e^2
\\
&=
-e^2
e^2
\\
&= 0
end{aligned}
]题目217
[
text{求极限 } lim_{xto0}frac{(1 x)^{frac{1}{x}} - (1 2x)^{frac{1}{2x}}}{sin x}
]解答
[
begin{aligned}
lim_{xto0}frac{(1 x)^{frac{1}{x}} - (1 2x)^{frac{1}{2x}}}{sin x}
&=
lim_{xto0}frac{e^{frac{ln(x 1)}{x}} - e^{frac{ln(2x 1)}{2x}}}{x}
\\
&=
lim_{xto0} e^{frac{ln(2x 1)}{2x}} cdot
frac{e^{frac{2ln(x 1) - ln(2x 1)}{2x}} - 1}{x}
\\
&=
ecdot
lim_{xto0}
frac{2ln(x 1) - ln(2x 1)}{2x^2}
\\
&=
ecdot
lim_{xto0}
frac{2x -x^2 - 2x 2x^2 o(x^2)}{2x^2}
\\
&=
frac{e}{2}
end{aligned}
]题目218
[
text{求极限 }
lim_{xto0}frac{1 dfrac{x^2}{2} - sqrt{1 x^2}}{(cos x - e ^{x^2})sin x^2}
]解答
x to 0 时,有如下推导:
[
cos x = 1 - frac{1}{2}x^2 o(x^2), quad
e^{x^2} = 1 x^2 o(x^2) quad Rightarrow quad
cos x - e^{x^2} sim -frac{3}{2}x^2
][
(1 x^2)^{frac{1}{2}} - 1 sim frac{1}{2}x^2 - frac{1}{8}x^4
]利用上述推导解决问题:
[
begin{aligned}
lim_{xto0}frac{1 dfrac{x^2}{2} - sqrt{1 x^2}}{(cos x - e ^{x^2})sin x^2}
&=
lim_{xto0}frac{dfrac{1}{8}x^4}{-dfrac{3}{2}x^4}
&=
-frac{1}{12}
end{aligned}
]题目219
[
text{求极限 }
lim_{xto0}frac{xsin x^2 - 2(1 - cos x)sin x}{x^5}
]解答
[
xsin x^2 = x^3 - dfrac{1}{6}x^6 o(x^6) quad
][
2(1 - cos x) sin x = (x^2 - dfrac{1}{12}x^4 o(x^4)) cdot (x - dfrac{1}{6}x^3 o(x^3)) = x^3 - (frac{1}{6} frac{1}{12}) x^5 o(x^5)
][
lim_{xto0}frac{xsin x^2 - 2(1 - cos x)sin x}{x^5} =
lim_{xto0}frac{x^3 - dfrac{1}{6}x^6 - x^3 dfrac{1}{4}x^5 o(x^5)}{x^5} = frac{1}{4}
]题目220
设 (f'(0) = 0), (f''(0))存在, 求极限 _{x0}
解答
“f-f” 型 同名函数 相减,考虑 拉格朗日中值定理
然后,通过题干给出的条件,建立等式
由于
f''(0) 存在,故
f'(x) 在点
x=0 处 连续 (可导
Rightarrow 连续)
故
limlimits_{xto 0}f'(x) = f'(0)先由
Lagrange 中值定理可得:
[
begin{aligned}
limlimits_{xto0}dfrac{f(x) - f(ln(1 x))}{x^3}
&=
limlimits_{xto0}dfrac{f'(xi)(x - ln(1 x))}{x^3}
end{aligned}
]其中
ln(1 x) < xi < x,两侧同除 x 取极限 ,然后 夹逼,可得:
[
limlimits_{xto 0}dfrac{ln(1 x)}{x} < limlimits_{xto 0} dfrac{xi}{x} < limlimits_{xto 0}dfrac{x}{x}
quadRightarrowquad
limlimits_{xto 0} dfrac{xi}{x} = 1
quadRightarrowquad
xi sim x quad(xto 0)
]最后用 导数定义 收尾:
[
begin{aligned}
limlimits_{xto0}dfrac{f'(xi)(x - ln(1 x))}{x^3}
&=
dfrac{1}{2} limlimits_{xto0} dfrac{f'(xi)}{x}
\\
&=
dfrac{1}{2} limlimits_{xto0} dfrac{f'(xi) - f'(0)}{xi} cdot dfrac{xi}{x}
\\
&=
dfrac{1}{2} limlimits_{xto0} dfrac{f'(xi) - f'(0)}{xi - 0} cdot 1
\\
&=
dfrac{1}{2} f''(0)
\\
end{aligned}
]题目221
[
lim_{xto0^ }frac{sqrt{a}arctansqrt{dfrac{x}{a}}-sqrt{b}arctansqrt{dfrac{x}{b}}}{xsqrt{x}}
]解答
[
arctan x = x - dfrac{1}{3}x^3 quad Rightarrow quad
arctan sqrt{dfrac{x}{a}} = sqrt{dfrac{x}{a}} - dfrac{x^{frac{3}{2}}}{3a^{frac{3}{2}}} o(x^{frac{3}{2}})
]根据上述推导,可对等式中的分子进行如下变形:
[
sqrt{a}arctansqrt{dfrac{x}{a}}-sqrt{b}arctansqrt{dfrac{x}{b}} =
x^{frac{1}{2}} - dfrac{x^{frac{3}{2}}}{3a} - x^{frac{1}{2}} dfrac{x^{frac{3}{2}}}{3b} o(x^{frac{3}{2}}) = dfrac{a - b}{3ab} x^{frac{3}{2}} o(x^{frac{3}{2}})
]刚好展开到分母对应的阶数,于是就做完了
[
lim_{xto0^ }frac{sqrt{a}arctansqrt{dfrac{x}{a}}-sqrt{b}arctansqrt{dfrac{x}{b}}}{xsqrt{x}} = dfrac{a - b}{3ab}
]题目222
设函数
f(x) 连续, 且
f(0)ne0, 求极限
limlimits_{xto0}dfrac{xint^x_{0}f(x-t)dt}{int_0^xtf(x-t)dt}解答
极限中有 变上限积分,考虑用 洛必达法则 求导消掉积分符号
然后分母的 被积函数 中含有
x,考虑对积分变量换元,从而分离出
x令
x - t = u,则
-dt = du,有
[
int_0^xf(x-t)dt = int_0^xf(u)du
][
int_0^xtf(x-t)dt = int_0^x(x - u)f(u)du = xint_0^xf(u)du - int_0^x uf(u)du
]拆分好后,按照先前给出的思路,洛必达 即可
[
limlimits_{xto0}dfrac{xint_0^xf(u)du}{xint_0^xf(u)du - int_0^x uf(u)du} =
limlimits_{xto0}dfrac{int_0^xf(u)du xf(x)}{int_0^xf(u)du}
]这里没说
f(x) 可导,再洛就寄了,考虑 积分中值定理 来去掉 积分符号
(exists xi in (0,x), s.t. xf(xi) = int_0^x f(u)du),则原式 = {x0} = {x0}
又由于
f(x) 连续,且
f(0) ne 0,故
limlimits_{xi to 0} f(xi) = f(0) ne 0于是,原式 = _{(, x) (0,0)} = = 2
题目223
设函数
f(x) 连续,且
limlimits_{xto0}dfrac{f(x)}{x} = 2, 求极限
limlimits_{xto0}dfrac{displaystyleint_0^xe^{xt}arctan(x-t)^2dt}{displaystyleint_0^xtf(x-t)dt}解答
由函数
f(x) 连续 及
limlimits_{xto0}dfrac{f(x)}{x} = 2,易知:
limlimits_{xto0}f(x)=f(0)=0再由 导数定义,可得:
f'(0) = limlimits_{xto0}dfrac{f(x) - f(0)}{x - 0} = 2变上限积分函数 求极限,考虑 洛必达法则 求导去积分符号
分子的 变上限积分函数 中,既有
xt 又有
x-t,换元法 不能同时消掉,故考虑 广义积分中值定理
由 广义积分中值定理
displaystyleint_a^b f(x)g(x)dx = f(xi) displaystyleint_a^b g(x)dx,其中
g(x) 在
(a,b) 上不变号
易知在
xto 0 时,
arctan(x-t)^2 不变号,于是有:
displaystyleint_0^xe^{xt}arctan(x-t)^2dt = e^{xxi}displaystyleint_0^xarctan(x-t)^2dt,其中
xiin(0,x)[
begin{aligned}
limlimits_{xto0}frac{displaystyleint_0^xe^{xt}arctan(x-t)^2dt}{displaystyleint_0^xtf(x-t)dt} &=
e^0 cdot limlimits_{xto0}frac{displaystyleint_0^xarctan(x-t)^2dt}{displaystyleint_0^xtf(x-t)dt} \\
&=
limlimits_{xto0}frac{displaystyleint_0^xarctan u^2du}{xdisplaystyleint_0^xf(u)du - displaystyleint_0^x uf(u)du}
\\
&=
limlimits_{xto0}frac{arctan x^2}{xf(x) displaystyleint_0^xf(u)du - xf(x)}
\\
&=
limlimits_{xto0}frac{x^2}{displaystyleint_0^xf(u)du}
\\
&=
limlimits_{xto0}frac{2x}{f(x)} =
2 cdot limlimits_{xto0}frac{1}{dfrac{f(x) - f(0)}{x - 0}}
\\
&= frac{2}{f'(0)} \\
&= 1
end{aligned}
]