武忠祥老师每日一题|第211 - 223题

2022-09-20 10:50:14 浏览数 (1)

题目211

f(x)=1-cos{x}

,求极限

limlimits_{xto0}dfrac{(1-sqrt{cos{x}})(1-sqrt[3]{cos{x}})(1-sqrt[4]{cos{x}})(1-sqrt[5]{cos{x}})}{f\{f[f(x)]\}}

解答

x to 0

时:

[ 1-sqrt{cos x} sim 1 - (1 - frac{1}{2}x^2)^{frac{1}{2}} sim -(-frac{1}{4})x^2 = frac{1}{4}x^2 ]

同理,由此推导可证得:

1 - cos^alpha x sim dfrac{1}{2} alpha x^2
[ begin{aligned} text{原式} &= frac {dfrac{1}{4} cdot dfrac{1}{6} cdot dfrac{1}{8} cdot dfrac{1}{10} cdot x^8} {1 - cos(f[f(x)])} \\ &= frac {dfrac{x^8}{1920}} {dfrac{1}{2}[1 - cos f(x)]^2} \\ &= frac {dfrac{x^8}{1920}} {dfrac{1}{2}[dfrac{1}{2}(1 - cos x)^2]^2} \\ &= frac {dfrac{x^8}{1920}} {dfrac{1}{128} cdot x^8} \\ &= frac{1}{15} \\ end{aligned} ]

题目212

[ text{求极限 } lim_{xto0}frac{tan(sin x) - x}{arctan x - arcsin x} ]

解答

该极限为

dfrac{0}{0}

型极限,常用方法有:

  1. 洛必达法则
  2. 等价无穷小
  3. 泰勒展开
[ tan x - x sim frac{1}{3}x^3 quadRightarrowquad tan(sin x) - sin x sim frac{1}{3}sin^3x ]

由以上 等价无穷小,我们可以考虑 加减交叉项 凑出需要的形式

[ begin{aligned} text{原式} &= lim_{xto 0} frac{tan(sin x) - sin x sin x - x}{-dfrac{1}{3}x^3 - dfrac{1}{6}x^3} \\ &= -2lim_{xto 0} frac{tan(sin x) - sin x}{x^3} -2lim_{xto 0} frac{sin x - x}{x^3} \\ &= -2lim_{xto 0} frac{dfrac{1}{3}sin^3 x}{x^3} -2lim_{xto 0} frac{-dfrac{1}{6}x^3}{x^3} \\ &= -frac{2}{3} frac{1}{3} \\ &= -frac{1}{3} \\ end{aligned} ]

题目213

[ text{求极限 } lim_{xto0}frac{sqrt[4]{1-sqrt[3]{1-sqrt{1-x}}} - 1} {(1 x)^frac{1}{sqrt[3]{x^2}} - 1} ]

解答

[ sqrt[4]{1-sqrt[3]{1-sqrt{1-x}}} - 1 sim sqrt[4]{1-sqrt[3]{frac{1}{2}x}} - 1 sim -frac{1}{2^{frac{7}{3}}}x^{frac{1}{3}} ]
[ (1 x)^frac{1}{sqrt[3]{x^2}} - 1 sim x^{frac{1}{3}} ]
[ text{原式} = lim_{xto0}frac{-dfrac{1}{2^{frac{7}{3}}}x^{frac{1}{3}}}{x^{frac{1}{3}}} = -frac{1}{2^{frac{7}{3}}} ]

题目214

[ lim_{xto0}frac{(3 sin x^2)^x-3^{sin x}}{x^3} ]

解答

底数相同幂指函数 相减,一般考虑 左提右式拉格朗日中值定理(不推荐)

[ begin{aligned} lim_{xto0}frac{(3 sin x^2)^x-3^{sin x}}{x^3} &= lim_{xto0}frac{e^{xln(3 sin x^2)} - e^{sin xln 3}}{x^3} \\ &= lim_{xto0}frac{e^{sin xln 3}[xln(3 sin x^2) - sin xln 3]}{x^3} \\ &= lim_{xto0}frac{xln(3 sin x^2) - xln 3 - (sin xln 3 - xln 3)}{x^3} \\ &= lim_{xto0}frac{xcdot [ln(3 sin x^2) - ln 3]}{x^3} - ln 3cdot lim_{xto0}frac{sin x - x}{x^3} \\ &= lim_{xto0}frac{xcdot ln(1 dfrac{sin x^2}{3})}{x^3} frac{ln 3}{6} \\ &= lim_{xto0}frac{x cdot sin x^2}{3x^3} frac{ln 3}{6} \\ &= frac{1}{3} frac{ln 3}{6} \\ &= frac{2 ln 3}{6} \\ end{aligned} ]

题目215

[ text{求极限 }lim_{xto 1}frac{x - x^x}{1 - x ln x} ]

解答

先处理分子:

[ lim_{xto 1}frac{x - x^x}{1 - x ln x} = lim_{xto 1}x cdot frac{1 - x^{x - 1}}{1 - x ln x} = -lim_{xto 1}frac{e^{(x-1)ln x} - 1}{1 - x ln x} = -lim_{xto 1}frac{(x-1)ln x}{1 - x ln x} ]

不妨换元,令

t = x - 1

,则

x = 1 t
[ text{原式}= -lim_{tto0} frac {tln(1 t)} {ln(1 t) - t} = -lim_{tto0} frac {t^2} {bigg(t - dfrac{1}{2}t^2 o(t^2)bigg) - t} = 2 ]

题目216

[ text{求极限 } lim_{xto0}frac{(1 x)^{frac{2}{x}} - e^2[1 - ln(1 x)]}{x} ]

解答

[ begin{aligned} lim_{xto0}frac{(1 x)^{frac{2}{x}} - e^2[1 - ln(1 x)]}{x} &= lim_{xto0}frac{e^{frac{2ln(1 x)}{x}} - e^2[1 - ln(1 x)]}{x} \\ &= e^2 cdot lim_{xto0}frac{e^{frac{2ln(1 x) - 2x}{x}} - 1 ln(1 x)}{x} \\ &= e^2 cdot lim_{xto0}frac{e^{frac{2ln(1 x) - 2x}{x}} - 1}{x} e^2 cdot lim_{xto0}frac{ln(1 x)}{x} \\ &= e^2 cdot lim_{xto0}frac{2ln(1 x) - 2x}{x^2} e^2 \\ &= -e^2 e^2 \\ &= 0 end{aligned} ]

题目217

[ text{求极限 } lim_{xto0}frac{(1 x)^{frac{1}{x}} - (1 2x)^{frac{1}{2x}}}{sin x} ]

解答

[ begin{aligned} lim_{xto0}frac{(1 x)^{frac{1}{x}} - (1 2x)^{frac{1}{2x}}}{sin x} &= lim_{xto0}frac{e^{frac{ln(x 1)}{x}} - e^{frac{ln(2x 1)}{2x}}}{x} \\ &= lim_{xto0} e^{frac{ln(2x 1)}{2x}} cdot frac{e^{frac{2ln(x 1) - ln(2x 1)}{2x}} - 1}{x} \\ &= ecdot lim_{xto0} frac{2ln(x 1) - ln(2x 1)}{2x^2} \\ &= ecdot lim_{xto0} frac{2x -x^2 - 2x 2x^2 o(x^2)}{2x^2} \\ &= frac{e}{2} end{aligned} ]

题目218

[ text{求极限 } lim_{xto0}frac{1 dfrac{x^2}{2} - sqrt{1 x^2}}{(cos x - e ^{x^2})sin x^2} ]

解答

x to 0

时,有如下推导:

[ cos x = 1 - frac{1}{2}x^2 o(x^2), quad e^{x^2} = 1 x^2 o(x^2) quad Rightarrow quad cos x - e^{x^2} sim -frac{3}{2}x^2 ]
[ (1 x^2)^{frac{1}{2}} - 1 sim frac{1}{2}x^2 - frac{1}{8}x^4 ]

利用上述推导解决问题:

[ begin{aligned} lim_{xto0}frac{1 dfrac{x^2}{2} - sqrt{1 x^2}}{(cos x - e ^{x^2})sin x^2} &= lim_{xto0}frac{dfrac{1}{8}x^4}{-dfrac{3}{2}x^4} &= -frac{1}{12} end{aligned} ]

题目219

[ text{求极限 } lim_{xto0}frac{xsin x^2 - 2(1 - cos x)sin x}{x^5} ]

解答

[ xsin x^2 = x^3 - dfrac{1}{6}x^6 o(x^6) quad ]
[ 2(1 - cos x) sin x = (x^2 - dfrac{1}{12}x^4 o(x^4)) cdot (x - dfrac{1}{6}x^3 o(x^3)) = x^3 - (frac{1}{6} frac{1}{12}) x^5 o(x^5) ]
[ lim_{xto0}frac{xsin x^2 - 2(1 - cos x)sin x}{x^5} = lim_{xto0}frac{x^3 - dfrac{1}{6}x^6 - x^3 dfrac{1}{4}x^5 o(x^5)}{x^5} = frac{1}{4} ]

题目220

设 (f'(0) = 0), (f''(0))存在, 求极限 _{x0}

解答

“f-f” 型 同名函数 相减,考虑 拉格朗日中值定理

然后,通过题干给出的条件,建立等式

由于

f''(0)

存在,故

f'(x)

在点

x=0

连续 (可导

Rightarrow

连续)

limlimits_{xto 0}f'(x) = f'(0)

先由

Lagrange

中值定理可得:

[ begin{aligned} limlimits_{xto0}dfrac{f(x) - f(ln(1 x))}{x^3} &= limlimits_{xto0}dfrac{f'(xi)(x - ln(1 x))}{x^3} end{aligned} ]

其中

ln(1 x) < xi < x

两侧同除 x 取极限 ,然后 夹逼,可得:

[ limlimits_{xto 0}dfrac{ln(1 x)}{x} < limlimits_{xto 0} dfrac{xi}{x} < limlimits_{xto 0}dfrac{x}{x} quadRightarrowquad limlimits_{xto 0} dfrac{xi}{x} = 1 quadRightarrowquad xi sim x quad(xto 0) ]

最后用 导数定义 收尾:

[ begin{aligned} limlimits_{xto0}dfrac{f'(xi)(x - ln(1 x))}{x^3} &= dfrac{1}{2} limlimits_{xto0} dfrac{f'(xi)}{x} \\ &= dfrac{1}{2} limlimits_{xto0} dfrac{f'(xi) - f'(0)}{xi} cdot dfrac{xi}{x} \\ &= dfrac{1}{2} limlimits_{xto0} dfrac{f'(xi) - f'(0)}{xi - 0} cdot 1 \\ &= dfrac{1}{2} f''(0) \\ end{aligned} ]

题目221

[ lim_{xto0^ }frac{sqrt{a}arctansqrt{dfrac{x}{a}}-sqrt{b}arctansqrt{dfrac{x}{b}}}{xsqrt{x}} ]

解答

[ arctan x = x - dfrac{1}{3}x^3 quad Rightarrow quad arctan sqrt{dfrac{x}{a}} = sqrt{dfrac{x}{a}} - dfrac{x^{frac{3}{2}}}{3a^{frac{3}{2}}} o(x^{frac{3}{2}}) ]

根据上述推导,可对等式中的分子进行如下变形:

[ sqrt{a}arctansqrt{dfrac{x}{a}}-sqrt{b}arctansqrt{dfrac{x}{b}} = x^{frac{1}{2}} - dfrac{x^{frac{3}{2}}}{3a} - x^{frac{1}{2}} dfrac{x^{frac{3}{2}}}{3b} o(x^{frac{3}{2}}) = dfrac{a - b}{3ab} x^{frac{3}{2}} o(x^{frac{3}{2}}) ]

刚好展开到分母对应的阶数,于是就做完了

[ lim_{xto0^ }frac{sqrt{a}arctansqrt{dfrac{x}{a}}-sqrt{b}arctansqrt{dfrac{x}{b}}}{xsqrt{x}} = dfrac{a - b}{3ab} ]

题目222

设函数

f(x)

连续, 且

f(0)ne0

, 求极限

limlimits_{xto0}dfrac{xint^x_{0}f(x-t)dt}{int_0^xtf(x-t)dt}

解答

极限中有 变上限积分,考虑用 洛必达法则 求导消掉积分符号

然后分母的 被积函数 中含有

x

,考虑对积分变量换元,从而分离出

x

x - t = u

,则

-dt = du

,有

[ int_0^xf(x-t)dt = int_0^xf(u)du ]
[ int_0^xtf(x-t)dt = int_0^x(x - u)f(u)du = xint_0^xf(u)du - int_0^x uf(u)du ]

拆分好后,按照先前给出的思路,洛必达 即可

[ limlimits_{xto0}dfrac{xint_0^xf(u)du}{xint_0^xf(u)du - int_0^x uf(u)du} = limlimits_{xto0}dfrac{int_0^xf(u)du xf(x)}{int_0^xf(u)du} ]

这里没说

f(x)

可导,再洛就寄了,考虑 积分中值定理 来去掉 积分符号

(exists xi in (0,x), s.t. xf(xi) = int_0^x f(u)du),则原式 = {x0} = {x0}

又由于

f(x)

连续,且

f(0) ne 0

,故

limlimits_{xi to 0} f(xi) = f(0) ne 0

于是,原式 = _{(, x) (0,0)} = = 2

题目223

设函数

f(x)

连续,且

limlimits_{xto0}dfrac{f(x)}{x} = 2

, 求极限

limlimits_{xto0}dfrac{displaystyleint_0^xe^{xt}arctan(x-t)^2dt}{displaystyleint_0^xtf(x-t)dt}

解答

由函数

f(x)

连续 及

limlimits_{xto0}dfrac{f(x)}{x} = 2

,易知:

limlimits_{xto0}f(x)=f(0)=0

再由 导数定义,可得:

f'(0) = limlimits_{xto0}dfrac{f(x) - f(0)}{x - 0} = 2

变上限积分函数 求极限,考虑 洛必达法则 求导去积分符号

分子的 变上限积分函数 中,既有

xt

又有

x-t

换元法 不能同时消掉,故考虑 广义积分中值定理

广义积分中值定理

displaystyleint_a^b f(x)g(x)dx = f(xi) displaystyleint_a^b g(x)dx

,其中

g(x)

(a,b)

上不变号

易知在

xto 0

时,

arctan(x-t)^2

不变号,于是有:

displaystyleint_0^xe^{xt}arctan(x-t)^2dt = e^{xxi}displaystyleint_0^xarctan(x-t)^2dt

,其中

xiin(0,x)
[ begin{aligned} limlimits_{xto0}frac{displaystyleint_0^xe^{xt}arctan(x-t)^2dt}{displaystyleint_0^xtf(x-t)dt} &= e^0 cdot limlimits_{xto0}frac{displaystyleint_0^xarctan(x-t)^2dt}{displaystyleint_0^xtf(x-t)dt} \\ &= limlimits_{xto0}frac{displaystyleint_0^xarctan u^2du}{xdisplaystyleint_0^xf(u)du - displaystyleint_0^x uf(u)du} \\ &= limlimits_{xto0}frac{arctan x^2}{xf(x) displaystyleint_0^xf(u)du - xf(x)} \\ &= limlimits_{xto0}frac{x^2}{displaystyleint_0^xf(u)du} \\ &= limlimits_{xto0}frac{2x}{f(x)} = 2 cdot limlimits_{xto0}frac{1}{dfrac{f(x) - f(0)}{x - 0}} \\ &= frac{2}{f'(0)} \\ &= 1 end{aligned} ]

0 人点赞