武忠祥老师每日一题|第224 - 239题

2022-09-20 10:51:39 浏览数 (1)

题目224

设函数

f(x)

一阶连续可导,且

f(0)=0

,

f'(0)ne0

,求

limlimits_{xto0}dfrac{displaystyleint_0^{x^2}f(t)dt}{x^2displaystyleint_0^xf(t)dt}

解答

连续可导:函数可导,且导函数连续

f(x)

一阶连续可导

quadRightarrowquad
limlimits_{x to 0} f'(x_0 x) = f'(x_0)
[ begin{aligned} limlimits_{xto0}dfrac{displaystyleint_0^{x^2}f(t)dt}{x^2displaystyleint_0^xf(t)dt} &xlongequal{L'} limlimits_{xto0}dfrac{2x f(x^2)}{2xdisplaystyleint_0^xf(t)dt x^2f(x)} \\ &= limlimits_{xto0}dfrac{2f(x^2)}{2displaystyleint_0^xf(t)dt xf(x)} \\ &xlongequal{L'} limlimits_{xto0}dfrac{4xf'(x^2)}{3f(x) xf'(x)} \\ &= limlimits_{xto0}dfrac{4f'(x^2)}{3 cdot dfrac{f(x)}{x} f'(x)} \\ &= frac{4f'(0)}{3 cdot limlimits_{xto0} dfrac{f(x)}{x} f'(0)} \\ &= frac{4f'(0)}{3f'(0) f'(0)} \\ &= 1 \\ end{aligned} ]

题目225

[ lim_{xto0^ }frac {displaystyleint_0^xint_u^xu^2arctan(1 tu)dtdu} {displaystyle(int_0^xln(1 t)dt)^2} ]

解答

本题核心思路还是 洛必达法则积分符号

分子是一个 积分变量 分别为

t

u

二重积分,且两个 积分上限 都是

x

不好直接 洛必达

先考虑一下 交换积分次序 的手段,能否解决这个问题(答案是显然的,因为积分域是一个三角形)

先画出 积分域,是一个边长为

x

正方形 副对角线 上方的 三角形区域

然后利用该 积分域交换积分次序

[ displaystyleint_0^xint_u^xu^2arctan(1 tu)dtdu = displaystyle int_0^xint_0^t u^2arctan(1 tu)dudt ]

通过 交换积分次序 的手段,我们成功在 积分限 上只保留了一个

x

,接下来就可以 洛必达

然后观察一下分母,可以利用 变上限积分,对 被积函数等价无穷小代换,如下:

[ ln(1 x)sim x quadRightarrowquad int_0^xln(1 t)dtsimint_0^xtdt ]

预处理都完成了,剩下的洛就完事了:

[ begin{aligned} &lim_{xto0^ }frac {displaystyle int_0^xint_0^t u^2arctan(1 tu)dudt} {displaystyle(int_0^x t dt)^2} \\ xlongequal{L'}& lim_{xto0^ }frac {displaystyle int_0^x u^2arctan(1 xu)du} {2xdisplaystyleint_0^xtdt} \\ xlongequal{scriptscriptstyletext{广义积分中值定理}}& lim_{xto0^ }frac {displaystyle arctan(1 xxi) cdot int_0^x u^2du} {2xdisplaystyleint_0^xtdt} quad text{其中} xiin(0,x) \\ =& frac{pi}{8} cdot lim_{xto0^ }frac {displaystyle int_0^x u^2du} {xdisplaystyleint_0^x tdt} \\ xlongequal{L'}& frac{pi}{8} cdot lim_{xto0^ }frac {x^2} {displaystyleint_0^x tdt x^2} \\ xlongequal{L'}& frac{pi}{8} cdot lim_{xto0^ }frac {2x} {3x} \\ =& frac{pi}{12} end{aligned} ]

题目226

[ lim_{xto infty}frac{displaystyleint_0^xt|sin t|dt}{x^2} ]

解答(一般方法)

本题直接 洛必达 的话,洛必达法则会失效

洛必达法则成立的三大条件:

dfrac{0}{0},dfrac{infty}{infty}, dfrac{cdot}{infty}

  1. 函数
f(x)

g(x)

x_0

去心邻域内 可导

  1. 求导后
limlimits_{xto x_0}dfrac{f'(x)}{g'(x)} = A

存在 (

A

可为 实数,也可为

infty

本题直接求导的话,原式 =

limlimits_{xto infty}dfrac{|sin x|dt}{2}

极限不存在,故 洛必达失效


考虑一下如何求解该题,对于 绝对值函数 来说,首要目标就是去 绝对值

|sin x|

周期

pi

,故我们可以考虑能不能用 不等式 进行 放缩,然后 夹逼

对于任意

kpi lt x lt kpi pi

,有:

[ begin{aligned} int_0^{kpi}t|sin t|dt &lt int_0^xt|sin t|dt &lt int_0^{kpi pi}t|sin t|dt end{aligned} ]

考虑如何求积分

displaystyle int_0^{kpi}t|sin t|dt
[ begin{aligned} I_1 &= int_0^{pi} t|sin t| dt = pi \\ I_2 &= int_pi^{2pi} t|sin t| dt = 3pi \\ cdots \\ I_n &= int_{(n-1)pi}^{npi} t|sin t| dt = (2n - 1)pi \\ end{aligned} ]

displaystyle int_0^{kpi}t|sin t|dt = k^2pi

这里分享另一个做法(区间再现 积分再现),由 @好孩子都会写代码 同学提供

[ begin{aligned} int_0^{kpi}t|sin t|dt &= int_0^{kpi}(kpi - t)|sin (kpi - t)|dt \\ &= kpiint_0^{kpi}|sin t|dt - int_0^{kpi} t|sin t|dt \\ I &= kpiint_0^{kpi}|sin t|dt - I \\ I &= frac{kpi}{2}int_0^{kpi}|sin t|dt \\ end{aligned} ]

而积分

displaystyleint_0^{kpi} |sin t|dt = 2k

是显然的(一拱的面积为

2

k

拱的面积为

2k

) 则

I = k^2pi

,这个做法必上述递推要简单

接着我们的任务就是 凑出题设的极限,然后 夹逼

[ lim_{xto infty}frac{k^2pi}{x^2} lt lim_{xto infty}frac{displaystyleint_0^xt|sin t|dt}{x^2} lt lim_{xto infty}frac{(k 1)^2pi}{x^2} ]

kx k x - kx {x } {x } _{x }

limlimits_{xto infty}dfrac{k^2pi}{x^2} = dfrac{1}{pi}

,代入不等式中夹逼可得:

limlimits_{xto infty}dfrac{displaystyleint_0^xt|sin t|dt}{x^2} = dfrac{1}{pi}

解答(O'Stolz定理)

知道 O'Stolz定理(洛必达推广的离散型) 这题就变成 构造题

x_n = displaystyleint_0^{npi} t|sin t|dt

y_n = x^2

,由于

\{y_n\}

单调递增,且

limlimits_{ntoinfty} y_n = infty

,由 O'Stolz 定理:

[ lim_{nto infty} frac{x_n}{y_n} = lim_{nto infty} frac{x_{n 1} - x_n}{y_{n 1} - y_n} = lim_{nto infty} frac{dfrac{(2n 2)(n 1)pi}{2} - dfrac{ncdot 2npi}{2}}{(npi pi)^2 - (npi)^2} = dfrac{1}{pi} ]

再由 海涅定理 可知:

[ lim_{nto infty} frac{displaystyleint_0^xt|sin t|dt}{x^2} = lim_{nto infty} frac{x_n}{y_n} = dfrac{1}{pi} ]

题目227

[ text{求极限 }lim_{xto infty}sinfrac{1}{x}cdotint_x^{x^2} (1 frac{1}{2t})^tsinfrac{1}{sqrt{t}}dt ]

解答

[ begin{aligned} & lim_{xto infty}sinfrac{1}{x}cdotint_x^{x^2} (1 frac{1}{2t})^tsinfrac{1}{sqrt{t}}dt \\ =& lim_{xto infty}[frac{displaystyleint_x^{x^2} (1 frac{1}{2t})^tsinfrac{1}{sqrt{t}}dt}{x}] \\ xlongequal{L'}& lim_{xto infty}[2x(1 frac{1}{2x^2})^{x^2}cdot sinfrac{1}{x} - (1 frac{1}{2x})^{x}cdot sinfrac{1}{sqrt{x}}] \\ =& lim_{xto infty}[2 cdot e^{x^2ln(1 frac{1}{2x^2})} - e^{xln(1 frac{1}{2x})}cdot frac{1}{sqrt{x}}] \\ =& 2lim_{xto infty}e^{x^2ln(1 frac{1}{2x^2})} - lim_{xto infty} e^{xln(1 frac{1}{2x})}cdot frac{1}{sqrt{x}} \\ =& 2e^{frac{1}{2}} - 0 \\ =& 2e^{frac{1}{2}} \\ end{aligned} ]

题目228

[ text{求极限 }lim_{xto infty}x(1-frac{ln x}{x})^x ]

解答一(暴力解)

"

infty cdot 0

" 型,考虑倒代还化为 "

dfrac{0}{0}

" 型

x = dfrac{1}{t}

,则:

[ begin{aligned} lim_{xto infty} x(1-frac{ln x}{x})^x &= lim_{tto0^ } frac{(1 tln t)^{dfrac{1}{t}}}{t} \\ &= lim_{tto0^ } frac{e^{dfrac{ln(1 tln t)}{t}}}{t} \\ &= lim_{tto0^ } frac{e^{dfrac{tln t - frac{1}{2}t^2ln^2 t o(t^2ln^2t)}{t}}}{t} \\ &= lim_{tto0^ } frac{e^{ln t}}{t} \\ &= lim_{tto0^ } frac{t}{t} \\ &= 1 end{aligned} ]

解答二(取对数)

考虑乘积幂次都有的式子,不妨取对数,转化为加减法(求导里常用)

y = x(1-dfrac{ln x}{x})^x
[ begin{aligned} lim_{xto infty} ln y &= lim_{xto infty} [ln x xln(1 - dfrac{ln x}{x})] \\ &= lim_{xto infty} x[ln(1 - dfrac{ln x}{x}) - (-dfrac{ln x}{x})] \\ &= lim_{xto infty} x[-dfrac{1}{2}(-dfrac{ln x}{x})^2] \\ &= -frac{1}{2} lim_{xto infty} dfrac{ln^2 x}{x} \\ &= 0 end{aligned} ]
limlimits_{xto infty} ln y = 0 quadRightarrowquad limlimits_{xto infty} y = 1

题目229

[ text{求极限 }lim_{xto0}Bigg(frac{1 displaystyleint_0^xe^{t^2}dt}{e^x-1} - frac{1}{sin x}Bigg) ]

解答

[ begin{aligned} lim_{xto0}Bigg(frac{1 displaystyleint_0^xe^{t^2}dt}{e^x-1} - frac{1}{sin x}Bigg) &= lim_{xto0}Bigg(frac{displaystyleint_0^xe^{t^2}dt}{e^x-1} - frac{sin x - e^x 1}{(e^x-1)sin x}Bigg) \\ &= lim_{xto0} frac{displaystyleint_0^xe^{t^2}dt}{e^x-1} - lim_{xto0}frac{sin x - e^x 1}{(e^x-1)sin x} \\ &= lim_{xto0} frac{displaystyleint_0^xe^{t^2}dt}{x} - lim_{xto0}frac{x - x - dfrac{1}{2}x^2}{x^2} \\ &= 1 - dfrac{1}{2} \\ &= frac{1}{2} end{aligned} ]

题目230

[ lim_{xto0}Big[frac{1}{ln(x sqrt{1 x^2})} - frac{1}{ln(1 x) int_0^xt(1 t)^{frac{1}{t}}dt}Big] ]

解答

[ lim_{xto0}frac{ln(x sqrt{1 x^2})}{x} = 1 quadRightarrowquad ln(x sqrt{1 x^2}) sim x ]
[ lim_{xto0}frac{int_0^xt(1 t)^{frac{1}{t}}dt}{x} = 0 quadRightarrowquad Big[ ln(1 x) int_0^xt(1 t)^{frac{1}{t}}dtBig] sim ln(1 x) sim x ]
[ begin{aligned} & lim_{xto0}Big[frac{1}{ln(x sqrt{1 x^2})} - frac{1}{ln(1 x) displaystyleint_0^xt(1 t)^{frac{1}{t}}dt}Big] \\ =& lim_{xto0}frac {ln(1 x) displaystyleint_0^xt(1 t)^{frac{1}{t}}dt - ln(x sqrt{1 x^2})} {x^2} \\ =& lim_{xto0}Bigg[frac{ln(1 x) - ln(x sqrt{1 x^2})}{x^2}Bigg] lim_{xto0}Bigg[frac{int_0^xt(1 t)^{frac{1}{t}}dt}{x^2}Bigg] quad(极限的四则运算) \\ =& lim_{xto0}Bigg[frac{dfrac{1}{xi}(1 - sqrt{1 x^2})}{x^2}Bigg] lim_{xto0}Bigg[frac{x(1 x)^{frac{1}{x}}}{2x}Bigg] quadbigg(Lagrange中值定理bigg) \\ =& lim_{xto0}Bigg(frac{1 cdot (-1)}{2sqrt{1 x^2}}Bigg) lim_{xto0}Bigg(frac{e}{2}Bigg) quad(洛必达) \\ =& frac{e - 1}{2} end{aligned} ]

题目231

[ lim_{xto infty} bigg[{ (x^3 - x^2 dfrac{x}{2} 1) e^{frac{1}{x}} - sqrt{x^6 x^2 x 1} }bigg] ]

解答

不是很喜欢这种 硬展 的题目

[ begin{aligned} &lim_{xto infty} bigg[{ (x^3 - x^2 dfrac{x}{2} 1) e^{frac{1}{x}} - x^3 x^3 - sqrt{x^6 x^2 x 1} }bigg] \\ =& lim_{xto infty} x^3 [(1-dfrac{1}{x} dfrac{1}{2x^2} dfrac{1}{x^3})e^{frac{1}{x}} - sqrt{1 dfrac{1}{x^4} dfrac{1}{x^5} dfrac{1}{x^6}}] \\ =& lim_{xto infty} x^3 cdot e^{frac{1}{x}} [(1-dfrac{1}{x} dfrac{1}{2x^2} dfrac{1}{x^3}) - e^{-frac{1}{x}}sqrt{1 dfrac{1}{x^4} dfrac{1}{x^5} dfrac{1}{x^6}}] \\ =& lim_{xto infty} x^3 cdot [(1-dfrac{1}{x} dfrac{1}{2x^2} dfrac{1}{x^3}) - (1 - dfrac{1}{x} dfrac{1}{2x^2} - dfrac{1}{6x^3}) (1 o(dfrac{1}{x^3}))] \\ =& lim_{xto infty} x^3 cdot [dfrac{7}{6} cdot dfrac{1}{x^3} o(dfrac{1}{x^3})] \\ =& dfrac{7}{6} end{aligned} ]

题目232

[ lim_{x to 0} frac{ln(1 sin^2 x) - 6(sqrt[3]{2-cos x} - 1)}{x^4} ]

解答

复合函数处理方法: 1. 强行泰勒展开(多项式计算量大) 2. 添项减项(精度随缘)

[ ln(1 sin^2 x) - sin ^2x sim -dfrac{1}{2}sin^4x sim -dfrac{1}{2}x^4 ]
[ (1 x)^{frac{1}{3}} - 1 - x sim -dfrac{1}{9} x^2 ]
[ [1 (1 - cos x)]^{frac{1}{3}} - 1 - dfrac{1}{3}(1 - cos x)sim -dfrac{1}{9} (1 - cos x)^2 sim -dfrac{1}{36} x^4 ]
[ begin{aligned} &lim_{x to 0} frac{ln(1 sin^2 x) - 6(sqrt[3]{2-cos x} - 1)}{x^4} \\ =& lim_{x to 0} frac{ln(1 sin^2 x) - sin^2x 2(1-cos x)- 6(sqrt[3]{2-cos x} - 1) sin^2x - 2(1 - cos x) }{x^4} end{aligned} ]
[ dfrac{sin^2x - 2 2cos x}{x^4} = dfrac{cos x - 1}{2x^2} = -dfrac{1}{4} ]
[ begin{aligned} & lim_{x to 0} frac{ln(1 sin^2 x) - sin^2x}{x^4} - lim_{x to 0} frac{-2(1-cos x) 6(sqrt[3]{2-cos x} - 1)}{x^4} \\ & lim_{x to 0} frac{sin^2x - 2(1 - cos x)}{x^4} \\ = & -dfrac{1}{2} dfrac{1}{6} dfrac{1}{4} = -dfrac{7}{12} end{aligned} ]

题目233

[ lim_{xto0} int_0^xBig(frac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}cot x dt ]

解答

[ begin{aligned} & lim_{xto0} int_0^xBig(frac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}cot x dt \\ =& lim_{xto0} dfrac{displaystyleint_0^x Big(dfrac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}dt}{tan x} \\ =& lim_{xto0} Big(dfrac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}dt \\ & lim_{xto0} dfrac{ln(dfrac{arctan t}{t})}{displaystyleint_0^t ln(1 u)du} \\ =& lim_{xto0} dfrac{arctan t - t}{tdisplaystyleint_0^t udu} \\ =& -dfrac{2}{3} \\ & lim_{xto0} int_0^xBig(frac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}cot x dt \\ =& e^{-frac{2}{3}} end{aligned} ]

题目234

[ lim_{xto infty}Big[frac{ln(x sqrt{x^2 1})}{ln(x sqrt{x^2-1})}Big]^{x^2ln x} ]

解答

[ limlimits_{xto infty}frac{ln(x sqrt{x^2-1})}{ln x} = 1 quadRightarrowquad ln(x sqrt{x^2-1}) sim ln x ]
[ limlimits_{xto infty}frac{sqrt{x^2 1} - sqrt{x^2-1}}{frac{1}{x}} = 1 quadRightarrowquad sqrt{x^2 1} - sqrt{x^2-1} sim dfrac{1}{x} ]
[ begin{aligned} 原式 &= lim_{xto infty} e^{x^2ln xcdotln(frac{ln(x sqrt{x^2 1})}{ln(x sqrt{x^2-1})})} quad(幂指函数互化) \\ &= e^{limlimits_{xto infty}x^2ln xcdot (frac{ln(x sqrt{x^2 1}) - ln(x sqrt{x^2-1})}{ln(x sqrt{x^2-1})})} quad(等价无穷小代换) \\ &= e^{limlimits_{xto infty}x^2ln xcdot (frac{ln(x sqrt{x^2 1}) - ln(x sqrt{x^2-1})}{ln x})} quad(ln(x sqrt{x^2-1}) sim ln x) \\ &= e^{limlimits_{xto infty}x^2cdot Big((ln(x sqrt{x^2 1}) - ln(x sqrt{x^2-1})Big)} quad = e^{limlimits_{xto infty}x^2cdot lnfrac{x sqrt{x^2 1}}{x sqrt{x^2-1}}} quad (lnfrac{A}{B} = ln A - ln B) \\ &= e^{limlimits_{xto infty}x^2cdot frac{x sqrt{x^2 1} - x - sqrt{x^2-1}}{x sqrt{x^2-1}}} quad = e^{limlimits_{xto infty}x^2cdot frac{sqrt{x^2 1} - sqrt{x^2-1}}{x sqrt{x^2-1}}} quad(等价无穷小代换) \\ &= e^{limlimits_{xto infty}x^2cdot frac{frac{1}{x}}{x sqrt{x^2-1}}} quad = e^{limlimits_{xto infty}frac{x}{x sqrt{x^2-1}}} quad(sqrt{x^2 1} - sqrt{x^2-1} sim dfrac{1}{x}) \\ &= e^{frac{1}{2}} end{aligned} ]

题目235

f(x)

连续,

limlimits_{xto0}dfrac{f(x)}{x}=1

,求极限

limlimits_{xto0}Big[ 1 displaystyleint_0^xtf(x^2-t^2)dt Big]^{dfrac{1}{(tan x - x)ln(1 x)}}

解答

(f(x)) 连续 (\&)

幂指函数,先取指对数,然后单独处理指数部分

[ begin{aligned} & lim_{xto0} dfrac{ln(1 displaystyleint_0^x tf(x^2 - t^2)dt)}{(tan x - x) ln(1 x)} \\ =& lim_{xto0} dfrac{displaystyleint_0^x tf(x^2 - t^2)dt}{dfrac{1}{3}x^4} \\ & text{令} x^2 - t^2 = u, text{则} -2tdt = du \\ =& dfrac{3}{2} lim_{xto0} dfrac{displaystyleint_0^{x^2} f(u)du}{x^4} \\ xlongequal{L'}& dfrac{3}{4} lim_{xto0} dfrac{f(x^2)}{x^2} \\ =& dfrac{3}{4} lim_{xto0} dfrac{f(x^2) - f(0)}{x^2 - 0} \\ =& dfrac{3}{4} f_ '(0) \\ =& dfrac{3}{4} \\ end{aligned} ]

limlimits_{xto0}Big[ 1 displaystyleint_0^xtf(x^2-t^2)dt Big]^{dfrac{1}{(tan x - x)ln(1 x)}} = e^{frac{3}{4}}

题目236

[ lim_{xto infty} Big(x^{frac{1}{x}} - 1Big)^{frac{1}{ln x}} ]

解答

这里介绍一个 对数函数的等价无穷大技巧

x to x_0

时,

A

B

等价无穷小

A sim B

),则

ln A

ln B

等价无穷大

证明:

[ text{欲证:}lim_{xto x_0} dfrac{ln A}{ln B} = 1,text{不妨证} lim_{xto x_0} dfrac{ln A}{ln B} - 1 = 0 ]
[ lim_{xto x_0} dfrac{ln A}{ln B} - 1 = lim_{xto x_0} dfrac{ln A - ln B}{ln B} = lim_{xto x_0} dfrac{lndfrac{A}{B}}{ln B} = dfrac{0}{infty} = 0 quad QED ]

在本题中,取过指对数后,可利用该技巧:

[ begin{aligned} &lim_{xto infty} dfrac{ln (e^{dfrac{ln x}{x}} - 1)}{ln x} \\ =&lim_{xto infty} dfrac{ln ({dfrac{ln x}{x}})}{ln x} \\ =& lim_{xto infty} dfrac{lnln x - ln x}{ln x} \\ xlongequal{L'}& lim_{xto infty} dfrac{1 - ln x}{ln x} \\ =& -1 end{aligned} ]

故原式 =

e^{-1}

题目237

limlimits_{xto0}dfrac{cos(xe^x)-e^{-dfrac{x^2e^{2x}}{2}}}{x^alpha}= betane0

,求

alpha,beta

解答

已知极限反求参数,不能使用洛必达不能使用洛必达不能使用洛必达 这个行为违背了洛必达的 先验性 在已知极限的情况下,再洛必达获得的新极限,不一定与原极限相等

由泰勒展开:

[ cos(xe^x) = 1 - dfrac{1}{2} (x^2e^{2x}) dfrac{1}{24}x^4e^{4x} o(x^4e^{4x}) ]
[ e^{-dfrac{x^2e^{2x}}{2}} = 1 - dfrac{1}{2}(x^2e^{2x}) dfrac{1}{8}(x^4e^{4x}) o(x^4e^{4x}) ]

可以推得:

[ cos(xe^x)-e^{-dfrac{x^2e^{2x}}{2}} sim -dfrac{1}{12}x^4e^{4x} ]

故:

[ limlimits_{xto0}dfrac{cos(xe^x)-e^{-dfrac{x^2e^{2x}}{2}}}{x^alpha} = limlimits_{xto0} dfrac{-dfrac{1}{12}x^4}{x^alpha} = beta ne 0 ]

由于 极限存在,且不为

0

,故

alpha = 4, beta = - dfrac{1}{12}

题目238

[ lim_{xto0}frac{cos 2x - cos xsqrt{cos 2x}}{x^k} = a ne 0,text{求k,a} ]

解答

分子 恒等变形:

[ begin{aligned} cos 2x - cos xsqrt{cos 2x} &= sqrt{cos 2x} cdot (sqrt{cos 2x} - cos x) \\ &= sqrt{cos 2x} cdot dfrac{cos 2x - cos^2 x}{sqrt{cos 2x} cos x} \\ &= dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot (2cos^2 x - 1 - cos^2 x) \\ &= dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot (cos^2 x - 1) \\ &= dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot (- sin^2 x) \\ end{aligned} ]

故原式为

[ begin{aligned} lim_{xto0}frac{cos 2x - cos xsqrt{cos 2x}}{x^k} &= lim_{xto0} dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot frac{(- sin^2 x)}{x^k} \\ &= -dfrac{1}{2} lim_{xto0} frac{sin^2 x}{x^k} \\ &= -dfrac{1}{2} lim_{xto0} frac{x^2}{x^k} \\ end{aligned} ]

由于 极限存在,故

k = 2, a = -dfrac{1}{2}

题目239

limlimits_{xto0}dfrac{ax^2 bx 1-e^{x^2-2x}}{x^2}=2

,求

a,b

的值

解答

泰勒展开

[ e^{x^2 - 2x} - 1 = x^2 - 2x dfrac{1}{2}(x^2 - 2x)^2 o(x)^2 = 3x^2 - 2x o(x^2) ]

故可对原式进行 泰勒展开

[ limlimits_{xto0}dfrac{ax^2 bx 1-e^{x^2-2x}}{x^2} = limlimits_{xto0}dfrac{(a - 3)x^2 (b 2)x}{x^2} ]

极限存在,故

b = -2, a = 5

0 人点赞