2022-09-20 10:51:39
浏览数 (5)
题目224
设函数
f(x) 一阶连续可导,且
f(0)=0,
f'(0)ne0 ,求
limlimits_{xto0}dfrac{displaystyleint_0^{x^2}f(t)dt}{x^2displaystyleint_0^xf(t)dt}解答
连续可导:函数可导,且导函数连续
f(x) 一阶连续可导
quadRightarrowquadlimlimits_{x to 0} f'(x_0 x) = f'(x_0)[
begin{aligned}
limlimits_{xto0}dfrac{displaystyleint_0^{x^2}f(t)dt}{x^2displaystyleint_0^xf(t)dt}
&xlongequal{L'}
limlimits_{xto0}dfrac{2x f(x^2)}{2xdisplaystyleint_0^xf(t)dt x^2f(x)}
\\
&=
limlimits_{xto0}dfrac{2f(x^2)}{2displaystyleint_0^xf(t)dt xf(x)}
\\
&xlongequal{L'}
limlimits_{xto0}dfrac{4xf'(x^2)}{3f(x) xf'(x)}
\\
&=
limlimits_{xto0}dfrac{4f'(x^2)}{3 cdot dfrac{f(x)}{x} f'(x)}
\\
&=
frac{4f'(0)}{3 cdot limlimits_{xto0} dfrac{f(x)}{x} f'(0)}
\\
&=
frac{4f'(0)}{3f'(0) f'(0)}
\\
&=
1
\\
end{aligned}
]题目225
[
lim_{xto0^ }frac
{displaystyleint_0^xint_u^xu^2arctan(1 tu)dtdu}
{displaystyle(int_0^xln(1 t)dt)^2}
]解答
本题核心思路还是 洛必达法则 去 积分符号
分子是一个 积分变量 分别为
t 和
u 的 二重积分,且两个 积分上限 都是
x 不好直接 洛必达
先考虑一下 交换积分次序 的手段,能否解决这个问题(答案是显然的,因为积分域是一个三角形)
先画出 积分域,是一个边长为
x 的 正方形 副对角线 上方的 三角形区域
然后利用该 积分域,交换积分次序
[
displaystyleint_0^xint_u^xu^2arctan(1 tu)dtdu =
displaystyle int_0^xint_0^t u^2arctan(1 tu)dudt
]通过 交换积分次序 的手段,我们成功在 积分限 上只保留了一个
x,接下来就可以 洛必达 了
然后观察一下分母,可以利用 变上限积分,对 被积函数 做 等价无穷小代换,如下:
[
ln(1 x)sim x
quadRightarrowquad
int_0^xln(1 t)dtsimint_0^xtdt
]预处理都完成了,剩下的洛就完事了:
[
begin{aligned}
&lim_{xto0^ }frac
{displaystyle int_0^xint_0^t u^2arctan(1 tu)dudt}
{displaystyle(int_0^x t dt)^2}
\\
xlongequal{L'}&
lim_{xto0^ }frac
{displaystyle int_0^x u^2arctan(1 xu)du}
{2xdisplaystyleint_0^xtdt}
\\
xlongequal{scriptscriptstyletext{广义积分中值定理}}&
lim_{xto0^ }frac
{displaystyle arctan(1 xxi) cdot int_0^x u^2du}
{2xdisplaystyleint_0^xtdt}
quad text{其中} xiin(0,x)
\\
=&
frac{pi}{8} cdot
lim_{xto0^ }frac
{displaystyle int_0^x u^2du}
{xdisplaystyleint_0^x tdt}
\\
xlongequal{L'}&
frac{pi}{8} cdot
lim_{xto0^ }frac
{x^2}
{displaystyleint_0^x tdt x^2}
\\
xlongequal{L'}&
frac{pi}{8} cdot
lim_{xto0^ }frac
{2x}
{3x}
\\
=& frac{pi}{12}
end{aligned}
]题目226
[
lim_{xto infty}frac{displaystyleint_0^xt|sin t|dt}{x^2}
]解答(一般方法)
本题直接 洛必达 的话,洛必达法则会失效
洛必达法则成立的三大条件:
dfrac{0}{0},dfrac{infty}{infty}, dfrac{cdot}{infty} 型
- 函数
f(x) 和
g(x) 在
x_0 的 去心邻域内 可导
- 求导后
limlimits_{xto x_0}dfrac{f'(x)}{g'(x)} = A 存在 (
A可为 实数,也可为
infty)
本题直接求导的话,原式 =
limlimits_{xto infty}dfrac{|sin x|dt}{2} 极限不存在,故 洛必达失效
考虑一下如何求解该题,对于 绝对值函数 来说,首要目标就是去 绝对值
|sin x| 的 周期 是
pi,故我们可以考虑能不能用 不等式 进行 放缩,然后 夹逼
对于任意
kpi lt x lt kpi pi,有:
[
begin{aligned}
int_0^{kpi}t|sin t|dt < int_0^xt|sin t|dt < int_0^{kpi pi}t|sin t|dt
end{aligned}
]考虑如何求积分
displaystyle int_0^{kpi}t|sin t|dt[
begin{aligned}
I_1 &= int_0^{pi} t|sin t| dt = pi \\
I_2 &= int_pi^{2pi} t|sin t| dt = 3pi \\
cdots \\
I_n &= int_{(n-1)pi}^{npi} t|sin t| dt = (2n - 1)pi \\
end{aligned}
]故
displaystyle int_0^{kpi}t|sin t|dt = k^2pi 这里分享另一个做法(区间再现 积分再现),由 @好孩子都会写代码 同学提供
[
begin{aligned}
int_0^{kpi}t|sin t|dt
&=
int_0^{kpi}(kpi - t)|sin (kpi - t)|dt
\\
&=
kpiint_0^{kpi}|sin t|dt - int_0^{kpi} t|sin t|dt
\\
I &=
kpiint_0^{kpi}|sin t|dt - I
\\
I &=
frac{kpi}{2}int_0^{kpi}|sin t|dt
\\
end{aligned}
] 而积分
displaystyleint_0^{kpi} |sin t|dt = 2k 是显然的(一拱的面积为
2,
k 拱的面积为
2k) 则
I = k^2pi,这个做法必上述递推要简单
接着我们的任务就是 凑出题设的极限,然后 夹逼
[
lim_{xto infty}frac{k^2pi}{x^2} lt lim_{xto infty}frac{displaystyleint_0^xt|sin t|dt}{x^2} lt lim_{xto infty}frac{(k 1)^2pi}{x^2}
]由 kx k x - kx {x } {x } _{x }
故
limlimits_{xto infty}dfrac{k^2pi}{x^2} = dfrac{1}{pi},代入不等式中夹逼可得:
limlimits_{xto infty}dfrac{displaystyleint_0^xt|sin t|dt}{x^2} = dfrac{1}{pi}
解答(O'Stolz定理)
知道 O'Stolz定理(洛必达推广的离散型) 这题就变成 构造题 了
令
x_n = displaystyleint_0^{npi} t|sin t|dt,
y_n = x^2,由于
\{y_n\} 单调递增,且
limlimits_{ntoinfty} y_n = infty,由 O'Stolz 定理:
[
lim_{nto infty} frac{x_n}{y_n} =
lim_{nto infty} frac{x_{n 1} - x_n}{y_{n 1} - y_n} =
lim_{nto infty} frac{dfrac{(2n 2)(n 1)pi}{2} - dfrac{ncdot 2npi}{2}}{(npi pi)^2 - (npi)^2} =
dfrac{1}{pi}
]再由 海涅定理 可知:
[
lim_{nto infty} frac{displaystyleint_0^xt|sin t|dt}{x^2} =
lim_{nto infty} frac{x_n}{y_n} = dfrac{1}{pi}
]题目227
[
text{求极限 }lim_{xto infty}sinfrac{1}{x}cdotint_x^{x^2}
(1 frac{1}{2t})^tsinfrac{1}{sqrt{t}}dt
]解答
[
begin{aligned}
&
lim_{xto infty}sinfrac{1}{x}cdotint_x^{x^2}
(1 frac{1}{2t})^tsinfrac{1}{sqrt{t}}dt
\\
=&
lim_{xto infty}[frac{displaystyleint_x^{x^2}
(1 frac{1}{2t})^tsinfrac{1}{sqrt{t}}dt}{x}]
\\
xlongequal{L'}&
lim_{xto infty}[2x(1 frac{1}{2x^2})^{x^2}cdot sinfrac{1}{x} -
(1 frac{1}{2x})^{x}cdot sinfrac{1}{sqrt{x}}]
\\
=&
lim_{xto infty}[2 cdot e^{x^2ln(1 frac{1}{2x^2})} -
e^{xln(1 frac{1}{2x})}cdot frac{1}{sqrt{x}}]
\\
=&
2lim_{xto infty}e^{x^2ln(1 frac{1}{2x^2})} - lim_{xto infty}
e^{xln(1 frac{1}{2x})}cdot frac{1}{sqrt{x}}
\\
=&
2e^{frac{1}{2}} - 0
\\
=&
2e^{frac{1}{2}}
\\
end{aligned}
]题目228
[
text{求极限 }lim_{xto infty}x(1-frac{ln x}{x})^x
]解答一(暴力解)
"
infty cdot 0" 型,考虑倒代还化为 "
dfrac{0}{0}" 型
令
x = dfrac{1}{t},则:
[
begin{aligned}
lim_{xto infty} x(1-frac{ln x}{x})^x
&=
lim_{tto0^ } frac{(1 tln t)^{dfrac{1}{t}}}{t}
\\
&=
lim_{tto0^ } frac{e^{dfrac{ln(1 tln t)}{t}}}{t}
\\
&=
lim_{tto0^ } frac{e^{dfrac{tln t - frac{1}{2}t^2ln^2 t o(t^2ln^2t)}{t}}}{t}
\\
&=
lim_{tto0^ } frac{e^{ln t}}{t}
\\
&=
lim_{tto0^ } frac{t}{t}
\\
&= 1
end{aligned}
]解答二(取对数)
考虑乘积幂次都有的式子,不妨取对数,转化为加减法(求导里常用)
令
y = x(1-dfrac{ln x}{x})^x[
begin{aligned}
lim_{xto infty} ln y
&=
lim_{xto infty} [ln x xln(1 - dfrac{ln x}{x})]
\\
&=
lim_{xto infty} x[ln(1 - dfrac{ln x}{x}) - (-dfrac{ln x}{x})]
\\
&=
lim_{xto infty} x[-dfrac{1}{2}(-dfrac{ln x}{x})^2]
\\
&=
-frac{1}{2} lim_{xto infty} dfrac{ln^2 x}{x}
\\
&= 0
end{aligned}
]limlimits_{xto infty} ln y = 0 quadRightarrowquad limlimits_{xto infty} y = 1题目229
[
text{求极限 }lim_{xto0}Bigg(frac{1 displaystyleint_0^xe^{t^2}dt}{e^x-1} - frac{1}{sin x}Bigg)
]解答
[
begin{aligned}
lim_{xto0}Bigg(frac{1 displaystyleint_0^xe^{t^2}dt}{e^x-1} - frac{1}{sin x}Bigg)
&=
lim_{xto0}Bigg(frac{displaystyleint_0^xe^{t^2}dt}{e^x-1} - frac{sin x - e^x 1}{(e^x-1)sin x}Bigg)
\\
&=
lim_{xto0} frac{displaystyleint_0^xe^{t^2}dt}{e^x-1} - lim_{xto0}frac{sin x - e^x 1}{(e^x-1)sin x}
\\
&=
lim_{xto0} frac{displaystyleint_0^xe^{t^2}dt}{x} - lim_{xto0}frac{x - x - dfrac{1}{2}x^2}{x^2}
\\
&=
1 - dfrac{1}{2}
\\
&= frac{1}{2}
end{aligned}
]题目230
[
lim_{xto0}Big[frac{1}{ln(x sqrt{1 x^2})} - frac{1}{ln(1 x) int_0^xt(1 t)^{frac{1}{t}}dt}Big]
]解答
[
lim_{xto0}frac{ln(x sqrt{1 x^2})}{x} = 1
quadRightarrowquad
ln(x sqrt{1 x^2}) sim x
][
lim_{xto0}frac{int_0^xt(1 t)^{frac{1}{t}}dt}{x} = 0
quadRightarrowquad
Big[ ln(1 x) int_0^xt(1 t)^{frac{1}{t}}dtBig] sim ln(1 x) sim x
][
begin{aligned}
&
lim_{xto0}Big[frac{1}{ln(x sqrt{1 x^2})} - frac{1}{ln(1 x) displaystyleint_0^xt(1 t)^{frac{1}{t}}dt}Big]
\\
=&
lim_{xto0}frac
{ln(1 x) displaystyleint_0^xt(1 t)^{frac{1}{t}}dt - ln(x sqrt{1 x^2})}
{x^2}
\\
=&
lim_{xto0}Bigg[frac{ln(1 x) - ln(x sqrt{1 x^2})}{x^2}Bigg]
lim_{xto0}Bigg[frac{int_0^xt(1 t)^{frac{1}{t}}dt}{x^2}Bigg] quad(极限的四则运算)
\\
=&
lim_{xto0}Bigg[frac{dfrac{1}{xi}(1 - sqrt{1 x^2})}{x^2}Bigg]
lim_{xto0}Bigg[frac{x(1 x)^{frac{1}{x}}}{2x}Bigg] quadbigg(Lagrange中值定理bigg)
\\
=&
lim_{xto0}Bigg(frac{1 cdot (-1)}{2sqrt{1 x^2}}Bigg)
lim_{xto0}Bigg(frac{e}{2}Bigg) quad(洛必达)
\\
=&
frac{e - 1}{2}
end{aligned}
]题目231
[
lim_{xto infty} bigg[{
(x^3 - x^2 dfrac{x}{2} 1) e^{frac{1}{x}} -
sqrt{x^6 x^2 x 1}
}bigg]
]解答
不是很喜欢这种 硬展 的题目
[
begin{aligned}
&lim_{xto infty} bigg[{
(x^3 - x^2 dfrac{x}{2} 1) e^{frac{1}{x}} - x^3 x^3 -
sqrt{x^6 x^2 x 1}
}bigg]
\\
=&
lim_{xto infty} x^3 [(1-dfrac{1}{x} dfrac{1}{2x^2} dfrac{1}{x^3})e^{frac{1}{x}} - sqrt{1 dfrac{1}{x^4} dfrac{1}{x^5} dfrac{1}{x^6}}]
\\
=&
lim_{xto infty} x^3 cdot e^{frac{1}{x}} [(1-dfrac{1}{x} dfrac{1}{2x^2} dfrac{1}{x^3}) - e^{-frac{1}{x}}sqrt{1 dfrac{1}{x^4} dfrac{1}{x^5} dfrac{1}{x^6}}]
\\
=&
lim_{xto infty} x^3 cdot [(1-dfrac{1}{x} dfrac{1}{2x^2} dfrac{1}{x^3}) -
(1 - dfrac{1}{x} dfrac{1}{2x^2} - dfrac{1}{6x^3}) (1 o(dfrac{1}{x^3}))]
\\
=&
lim_{xto infty} x^3 cdot [dfrac{7}{6} cdot dfrac{1}{x^3} o(dfrac{1}{x^3})]
\\
=& dfrac{7}{6}
end{aligned}
]题目232
[
lim_{x to 0} frac{ln(1 sin^2 x) - 6(sqrt[3]{2-cos x} - 1)}{x^4}
]解答
复合函数处理方法: 1. 强行泰勒展开(多项式计算量大) 2. 添项减项(精度随缘)
[
ln(1 sin^2 x) - sin ^2x sim -dfrac{1}{2}sin^4x sim -dfrac{1}{2}x^4
][
(1 x)^{frac{1}{3}} - 1 - x sim -dfrac{1}{9} x^2
][
[1 (1 - cos x)]^{frac{1}{3}} - 1 - dfrac{1}{3}(1 - cos x)sim
-dfrac{1}{9} (1 - cos x)^2 sim
-dfrac{1}{36} x^4
][
begin{aligned}
&lim_{x to 0} frac{ln(1 sin^2 x) - 6(sqrt[3]{2-cos x} - 1)}{x^4}
\\
=&
lim_{x to 0} frac{ln(1 sin^2 x) - sin^2x 2(1-cos x)- 6(sqrt[3]{2-cos x} - 1) sin^2x - 2(1 - cos x)
}{x^4}
end{aligned}
][
dfrac{sin^2x - 2 2cos x}{x^4} =
dfrac{cos x - 1}{2x^2} = -dfrac{1}{4}
][
begin{aligned}
&
lim_{x to 0} frac{ln(1 sin^2 x) - sin^2x}{x^4} -
lim_{x to 0} frac{-2(1-cos x) 6(sqrt[3]{2-cos x} - 1)}{x^4}
\\
&
lim_{x to 0} frac{sin^2x - 2(1 - cos x)}{x^4}
\\
= & -dfrac{1}{2} dfrac{1}{6} dfrac{1}{4} = -dfrac{7}{12}
end{aligned}
]题目233
[
lim_{xto0}
int_0^xBig(frac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}cot x dt
]解答
[
begin{aligned}
&
lim_{xto0}
int_0^xBig(frac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}cot x dt
\\
=&
lim_{xto0}
dfrac{displaystyleint_0^x Big(dfrac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}dt}{tan x}
\\
=&
lim_{xto0}
Big(dfrac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}dt
\\
&
lim_{xto0}
dfrac{ln(dfrac{arctan t}{t})}{displaystyleint_0^t ln(1 u)du}
\\
=&
lim_{xto0}
dfrac{arctan t - t}{tdisplaystyleint_0^t udu}
\\
=&
-dfrac{2}{3}
\\
&
lim_{xto0}
int_0^xBig(frac{arctan t}{t}Big)^{dfrac{1}{int_0^tln(1 u)du}}cot x dt
\\
=& e^{-frac{2}{3}}
end{aligned}
]题目234
[
lim_{xto infty}Big[frac{ln(x sqrt{x^2 1})}{ln(x sqrt{x^2-1})}Big]^{x^2ln x}
]解答
[
limlimits_{xto infty}frac{ln(x sqrt{x^2-1})}{ln x} = 1 quadRightarrowquad
ln(x sqrt{x^2-1}) sim ln x
][
limlimits_{xto infty}frac{sqrt{x^2 1} - sqrt{x^2-1}}{frac{1}{x}} = 1 quadRightarrowquad sqrt{x^2 1} - sqrt{x^2-1} sim dfrac{1}{x}
][
begin{aligned}
原式
&=
lim_{xto infty} e^{x^2ln xcdotln(frac{ln(x sqrt{x^2 1})}{ln(x sqrt{x^2-1})})}
quad(幂指函数互化)
\\
&=
e^{limlimits_{xto infty}x^2ln xcdot (frac{ln(x sqrt{x^2 1}) - ln(x sqrt{x^2-1})}{ln(x sqrt{x^2-1})})}
quad(等价无穷小代换)
\\
&=
e^{limlimits_{xto infty}x^2ln xcdot (frac{ln(x sqrt{x^2 1}) - ln(x sqrt{x^2-1})}{ln x})}
quad(ln(x sqrt{x^2-1}) sim ln x)
\\
&=
e^{limlimits_{xto infty}x^2cdot Big((ln(x sqrt{x^2 1}) - ln(x sqrt{x^2-1})Big)}
quad =
e^{limlimits_{xto infty}x^2cdot lnfrac{x sqrt{x^2 1}}{x sqrt{x^2-1}}}
quad (lnfrac{A}{B} = ln A - ln B)
\\
&=
e^{limlimits_{xto infty}x^2cdot frac{x sqrt{x^2 1} - x - sqrt{x^2-1}}{x sqrt{x^2-1}}}
quad =
e^{limlimits_{xto infty}x^2cdot frac{sqrt{x^2 1} - sqrt{x^2-1}}{x sqrt{x^2-1}}}
quad(等价无穷小代换)
\\
&=
e^{limlimits_{xto infty}x^2cdot frac{frac{1}{x}}{x sqrt{x^2-1}}}
quad =
e^{limlimits_{xto infty}frac{x}{x sqrt{x^2-1}}}
quad(sqrt{x^2 1} - sqrt{x^2-1} sim dfrac{1}{x})
\\
&=
e^{frac{1}{2}}
end{aligned}
]题目235
设
f(x) 连续,
limlimits_{xto0}dfrac{f(x)}{x}=1 ,求极限
limlimits_{xto0}Big[ 1 displaystyleint_0^xtf(x^2-t^2)dt Big]^{dfrac{1}{(tan x - x)ln(1 x)}}解答
(f(x)) 连续 (\&)
幂指函数,先取指对数,然后单独处理指数部分
[
begin{aligned}
&
lim_{xto0} dfrac{ln(1 displaystyleint_0^x tf(x^2 - t^2)dt)}{(tan x - x) ln(1 x)}
\\
=&
lim_{xto0} dfrac{displaystyleint_0^x tf(x^2 - t^2)dt}{dfrac{1}{3}x^4}
\\
& text{令} x^2 - t^2 = u, text{则} -2tdt = du
\\
=&
dfrac{3}{2}
lim_{xto0} dfrac{displaystyleint_0^{x^2} f(u)du}{x^4}
\\
xlongequal{L'}&
dfrac{3}{4}
lim_{xto0} dfrac{f(x^2)}{x^2}
\\
=&
dfrac{3}{4}
lim_{xto0} dfrac{f(x^2) - f(0)}{x^2 - 0}
\\
=&
dfrac{3}{4}
f_ '(0)
\\
=&
dfrac{3}{4}
\\
end{aligned}
]故
limlimits_{xto0}Big[ 1 displaystyleint_0^xtf(x^2-t^2)dt Big]^{dfrac{1}{(tan x - x)ln(1 x)}} = e^{frac{3}{4}}题目236
[
lim_{xto infty} Big(x^{frac{1}{x}} - 1Big)^{frac{1}{ln x}}
]解答
这里介绍一个 对数函数的等价无穷大技巧:
若
x to x_0 时,
A 与
B 是等价无穷小 (
A sim B),则
ln A 与
ln B 是 等价无穷大
证明:
[
text{欲证:}lim_{xto x_0} dfrac{ln A}{ln B} = 1,text{不妨证} lim_{xto x_0} dfrac{ln A}{ln B} - 1 = 0
][
lim_{xto x_0} dfrac{ln A}{ln B} - 1 = lim_{xto x_0} dfrac{ln A - ln B}{ln B} =
lim_{xto x_0} dfrac{lndfrac{A}{B}}{ln B} = dfrac{0}{infty} = 0 quad QED
]在本题中,取过指对数后,可利用该技巧:
[
begin{aligned}
&lim_{xto infty} dfrac{ln (e^{dfrac{ln x}{x}} - 1)}{ln x}
\\
=&lim_{xto infty}
dfrac{ln ({dfrac{ln x}{x}})}{ln x}
\\
=&
lim_{xto infty}
dfrac{lnln x - ln x}{ln x}
\\
xlongequal{L'}&
lim_{xto infty}
dfrac{1 - ln x}{ln x}
\\
=& -1
end{aligned}
]故原式 =
e^{-1}题目237
若
limlimits_{xto0}dfrac{cos(xe^x)-e^{-dfrac{x^2e^{2x}}{2}}}{x^alpha}= betane0,求
alpha,beta解答
已知极限反求参数,不能使用洛必达,不能使用洛必达,不能使用洛必达 这个行为违背了洛必达的 先验性 在已知极限的情况下,再洛必达获得的新极限,不一定与原极限相等
由泰勒展开:
[
cos(xe^x) = 1 - dfrac{1}{2} (x^2e^{2x}) dfrac{1}{24}x^4e^{4x} o(x^4e^{4x})
][
e^{-dfrac{x^2e^{2x}}{2}} = 1 - dfrac{1}{2}(x^2e^{2x}) dfrac{1}{8}(x^4e^{4x}) o(x^4e^{4x})
]可以推得:
[
cos(xe^x)-e^{-dfrac{x^2e^{2x}}{2}} sim -dfrac{1}{12}x^4e^{4x}
]故:
[
limlimits_{xto0}dfrac{cos(xe^x)-e^{-dfrac{x^2e^{2x}}{2}}}{x^alpha} =
limlimits_{xto0} dfrac{-dfrac{1}{12}x^4}{x^alpha} = beta ne 0
]由于 极限存在,且不为
0,故
alpha = 4, beta = - dfrac{1}{12}题目238
[
lim_{xto0}frac{cos 2x - cos xsqrt{cos 2x}}{x^k} = a ne 0,text{求k,a}
]解答
对 分子 恒等变形:
[
begin{aligned}
cos 2x - cos xsqrt{cos 2x} &= sqrt{cos 2x} cdot (sqrt{cos 2x} - cos x)
\\
&= sqrt{cos 2x} cdot dfrac{cos 2x - cos^2 x}{sqrt{cos 2x} cos x}
\\
&= dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot (2cos^2 x - 1 - cos^2 x)
\\
&= dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot (cos^2 x - 1)
\\
&= dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot (- sin^2 x)
\\
end{aligned}
]故原式为
[
begin{aligned}
lim_{xto0}frac{cos 2x - cos xsqrt{cos 2x}}{x^k} &=
lim_{xto0} dfrac{sqrt{cos 2x}}{sqrt{cos 2x} cos x} cdot frac{(- sin^2 x)}{x^k}
\\
&=
-dfrac{1}{2} lim_{xto0} frac{sin^2 x}{x^k}
\\
&=
-dfrac{1}{2} lim_{xto0} frac{x^2}{x^k}
\\
end{aligned}
]由于 极限存在,故
k = 2, a = -dfrac{1}{2}题目239
若
limlimits_{xto0}dfrac{ax^2 bx 1-e^{x^2-2x}}{x^2}=2,求
a,b的值
解答
由 泰勒展开:
[
e^{x^2 - 2x} - 1 = x^2 - 2x dfrac{1}{2}(x^2 - 2x)^2 o(x)^2 = 3x^2 - 2x o(x^2)
]故可对原式进行 泰勒展开:
[
limlimits_{xto0}dfrac{ax^2 bx 1-e^{x^2-2x}}{x^2} =
limlimits_{xto0}dfrac{(a - 3)x^2 (b 2)x}{x^2}
]极限存在,故
b = -2, a = 5