武忠祥老师每日一题|第336 - 338题

2022-09-20 11:10:13 浏览数 (1)

题目336

设函数

f(x)

二阶可导,且

f'(x) = f(1-x),f(0) = 1

,求

f(x)

解答

换元:

f'(1-x) = f(x) quad Rightarrow quad f'(1) = f(0) = 1

再求导:

f''(x) = -f'(1 - x)

联立两式:

f''(x) f(x) = 0

二阶常系数齐次微分方程

特征根:

lambda^2 1 = 0 quadRightarrowquad lambda = 0 pm i

齐次通解:

y = C_1cos x C_2 sin x quad Rightarrow quad y' = C_2cos x - C_1sin x

代入初值:

y(0) = C_1 = 1

,

y'(1) = C_2cos 1 - sin 1 = 1 quad Rightarrow quad C_2 = dfrac{1 sin 1}{cos 1}

综上所述:

f(x) = cos x dfrac{1 sin 1}{cos 1} cdot sin x

题目337

设函数

f(x)

可导,且对任意实数

x,h

满足

f(x h) = int_x^{x h}t[f(t h) t^2]dt f(x)
limlimits_{xto0}[1 f(x)]^{frac{1}{x^4}} = a

,求

f(x)

的表达式及常数

a

解答

f(x)

的表达式,考虑微分方程;题目又给了

f(x h)

的表达式,考虑导数定义来构造方程

[ f'(x) = lim_{hto0}frac{f(x h) - f(x)}{h} = lim_{hto0}frac{int_x^{x h} t[f(t h) t^2]dt }{h} = xf(x) x^3 ]

得到微分方程:

y' - xy = x^3

一阶线性微分方程

[ y = e^{int xdx} cdot Big[ int x^3 e^{int-xdx} dx C_1 Big] = -e^{frac{1}{2}x^2} cdot (x^2 e^{-frac{1}{2}x^2} 2e^{-frac{1}{2}x^2} C_2) = -x^2 - 2 Ce^{frac{1}{2}x^2} ]

下面这一步是错的,事实上

f(x) = -0.5 Rightarrow a = 0.5^{ infty} = 0

极限也是存在的 这题就是错题,需要额外添加条件

a > 0

a ne 1

limlimits_{xto0}[1 f(x)]^{frac{1}{x^4}} = a

存在,故

f(0) = 0 quadRightarrowquad C = 2 quadRightarrowquad y = -x^2 - 2 2e^{frac{1}{2}x^2}
[ begin{aligned} & lim_{xto0}[1 f(x)]^{frac{1}{x^4}} \\ = & lim_{xto0} (-x^2 - 1 2e^{frac{1}{2}x^2})^{frac{1}{x^4}} \\ = & exp[ lim_{xto0}frac{-x^2-2 2e^{frac{1}{2}x^2}}{x^4} ] \\ = & exp[ lim_{xto0}frac{dfrac{1}{4}x^4 o(x^4)}{x^4} ] \\ = & exp[ frac{1}{4} ] \\ end{aligned} ]

a = e^frac{1}{4}

题目338

f(x)

[0, infty)

上的正值连续函数,已知曲线

y=int_0^x f(u)du

x

及直线

x=t(t>0)

所围区域绕

y

轴旋转所得体积与曲线

y=f(x)

和两坐

标轴及直线

x=t(t>0)

所围区域的面积之和为

t^2

,求曲线

y = f(x)

方程

解答

微分方程的几何应用,按照题目要求,列出式子,最后建立方程求解即可

[ V = 2piiintlimits_{D_1}xdsigma = 2piint_0^tdxint_0^{int_0^xf(u)du} xdy = 2piint_0^txint_0^xf(u)dudx ]
[ S = int_0^t f(u)du ]
[ t^2 = V S quadRightarrowquad 2piint_0^txint_0^xf(u)dudx int_0^t f(u)du = t^2 ]

该式对两侧求导,然后令变上限积分函数

g(x) = int_0^x f(u)du

,则

g(0) = 0
[ 2pi tint_0^t f(u)du f(t) = 2t quadRightarrowquad y' 2pi xy = 2x ]

此为 变量可分离型 微分方程:

[ frac{dy}{pi y - 1} = -2xdx quadRightarrowquad ln(pi y - 1) = - pi x^2 C_1 quadRightarrowquad y = frac{1}{pi} (Ce^{-pi x^2} 1) ]

代入初值:y(0) = (C 1) = 0 C = -1 y = (1 - e{-x2})

两侧对

x

求导,便可得出最终答案:

[ f(x) = 2xe^{-pi x^2} ]

0 人点赞